sklearn中的朴素贝叶斯模型及其应用
1.使用朴素贝叶斯模型对iris数据集进行花分类
以下是3种不同类型的朴素贝叶斯:
(1)高斯分布型
(2)多项式型
(3)伯努利型
代码如下:
#导入iris数据集 from sklearn import datasets iris = datasets.load_iris() #第一种高斯分布型朴素贝叶斯 from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() #构造 pred =gnb.fit(iris.data,iris.target) #拟合 y_pred =pred.predict(iris.data) #预测 print(iris.data.shape[0],(iris.target != y_pred).sum()) #第二种多项式型朴素贝叶斯 from sklearn.naive_bayes import BernoulliNB gnb = BernoulliNB() pred = gnb.fit(iris.data,iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum()) #第三种伯努利型朴素贝叶斯 from sklearn.naive_bayes import MultinomialNB gnb = MultinomialNB() pred = gnb.fit(iris.data,iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum())
结果:
2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。
#第一种高斯分布型验证 from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import cross_val_score gnb = GaussianNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy1:%.3f"%scores.mean()) #第二种多项式型验证 from sklearn.naive_bayes import BernoulliNB from sklearn.model_selection import cross_val_score gnb =BernoulliNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy2:%.3f"%scores.mean()) #第三种伯努利型验证 from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score gnb = MultinomialNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy3:%.3f"%scores.mean())
结果:
3. 垃圾邮件分类
数据准备:
- 用csv读取邮件数据,分解出邮件类别及邮件内容。
- 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等
尝试使用nltk库:
pip install nltk
import nltk
nltk.download
#导入邮箱数据包文件 import csv file_path=r'G:\SMSSpamCollectionjsn.txt' sms=open(file_path,'r',encoding='utf-8') sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() sms_data=str(sms_data) #字符串 sms_data=sms_data.lower() #大小写 sms_data=sms_data.split() #列表 sms_data1=[] #处理后的内容 i=0 #去掉长度小于3的单词 for i in sms_data: if len(i)>4: sms_data1.append(i) continue
结果: