sklearn中的朴素贝叶斯模型及其应用

 

sklearn中的朴素贝叶斯模型及其应用

1.使用朴素贝叶斯模型对iris数据集进行花分类

以下是3种不同类型的朴素贝叶斯:

(1)高斯分布型

(2)多项式型

(3)伯努利型

代码如下:

#导入iris数据集
from sklearn import datasets
iris = datasets.load_iris()

#第一种高斯分布型朴素贝叶斯
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()  #构造
pred =gnb.fit(iris.data,iris.target)   #拟合
y_pred =pred.predict(iris.data)  #预测

print(iris.data.shape[0],(iris.target != y_pred).sum())


#第二种多项式型朴素贝叶斯
from sklearn.naive_bayes import BernoulliNB
gnb = BernoulliNB() 
pred = gnb.fit(iris.data,iris.target) 
y_pred = pred.predict(iris.data)  

print(iris.data.shape[0],(iris.target != y_pred).sum())

#第三种伯努利型朴素贝叶斯
from sklearn.naive_bayes import MultinomialNB
gnb = MultinomialNB()  
pred = gnb.fit(iris.data,iris.target)   
y_pred = pred.predict(iris.data)  

print(iris.data.shape[0],(iris.target != y_pred).sum())

结果:

   

2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。

 

#第一种高斯分布型验证
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
gnb = GaussianNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=10)
print("Accuracy1:%.3f"%scores.mean())

#第二种多项式型验证
from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import cross_val_score
gnb =BernoulliNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=10)
print("Accuracy2:%.3f"%scores.mean())


#第三种伯努利型验证
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import cross_val_score
gnb = MultinomialNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=10)
print("Accuracy3:%.3f"%scores.mean())

 

结果:

3. 垃圾邮件分类

数据准备:

  • 用csv读取邮件数据,分解出邮件类别及邮件内容。
  • 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等

尝试使用nltk库:

pip install nltk

import nltk

nltk.download

 

#导入邮箱数据包文件
import csv
file_path=r'G:\SMSSpamCollectionjsn.txt'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
    sms_label.append(line[0])
    sms_data.append(line[1])
sms.close()
sms_data=str(sms_data)   #字符串
sms_data=sms_data.lower()   #大小写
sms_data=sms_data.split()   #列表
sms_data1=[]    #处理后的内容
i=0
#去掉长度小于3的单词
for i in sms_data:
 if len(i)>4:
        sms_data1.append(i)
        continue

结果:

 

 

 

 

 

转载于:https://www.cnblogs.com/Soooooo/p/9999311.html

# bayes-python ### 具体代码见:bayes_iris.py ### 我直接用了iris_data数据集,每种花我选取前45条数据当做训练集,剩下5条数据另外存入测试集iris_test_data,并将数据随机手动打乱 #### 测试集如下: #### 因为这个数据集是连续性属性,所以需要利用概率密度函数。 #### 具体实验步骤为: #### (1)先读取数据集 #### (2)计算训练数据集上每个类别的各个特征属性上的均值和方差 #### (3)开始对测试数据集进行分类 #### (4)首先估计先验概率,这里我每个类别所占整体数据集的比例是一样的 #### (5)利用概率密度函数,计算测试数据集上各个属性在每个类别上的条件概率 #### (6)计算后验概率=先验概率*条件概率 #### (7)比较在各个类别上的后验概率,取最大值,则分为这个类别 #### 我们将结果与测试集比较发现结果完全正确! -------- 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值