非线性数据拟合-nls

本文介绍了在R语言中如何使用nls函数进行非线性回归,以米氏方程为例,详细阐述了数据设定、拟合过程、可视化判断拟合效果及残差诊断,帮助理解非线性回归在解决复杂关系问题中的应用。
摘要由CSDN通过智能技术生成

<!DOCTYPE html>

在许多实际问题中,回归模型中响应变量和预测变量之间的关系可能是复杂的非线性函数。这时就需要采取非线性回归方法来建立模型。非线性回归是在对变量的非线性关系有一定认识前提下,对非线性函数的参数进行最优化的过程,最优化后的参数会使得模型的RSS(残差平方和)达到最小。 在R语言中最为常用的非线性回归建模函数是nls,下面以米氏方程为例,介绍一下这个函数。

米氏方程(Michaelis-Menten equation)表示一个酶促反应的起始速度与底物浓度关系的速度方程。在酶促反应中,在低浓度底物情况下,反应相对于底物是一级反应(first order reaction);而当底物浓度处于中间范围时,反应(相对于底物)是混合级反应(mixed order reaction)。当底物浓度增加时,反应由一级反应向零级反应(zero order reaction)过渡。\(v_0 = \frac{V_{max}[S]}{K_m+[S]}\)这个方程称为Michaelis-Menten方程,是在假定存在一个稳态反应条件下推导出来的,其中\(K_m\)值称为米氏常数,\(V_{max}\)是酶被底物饱和时的反应速度,\([S]\)为底物浓度。

当前非线性拟合和多元拟合的工具较少,这是针对常用拟合算法,开发的一款数据拟合为主的软件。包括线性拟合的各种算法,非线性拟合的各种算法,以及多元拟合的各种算法。其中提供了很多非线性方程的模型,以满足不同的需求,也可以制定自己所需要的指定非线性方程模型的,采用最先进的初始值估算算法,无需初始值就可以拟合自己想要的非线性方程模型各个模块的介绍如下。 1.线性拟合算法模块 根据最小二乘拟合算法,对输入的数据进行变量指定次方的拟合。同时可对自变量或因变量进行自然对数和常用对数的转换后再拟合。根据实际情况,开发了单调性拟合以针对各种定量分析的用途。同时开发了,针对一组数据,得到最高相关系数的自动拟合功能,由程序自动选择拟合次数以及自变量和因变量的数据格式。 2.非线性拟合算法模块 根据非线性方程的特点,开发了最先进的智能初始值估算算法,配合LM迭代算法,进行非线性方程拟合。只需要输入自变量和因变量,就可以拟合出所需要的非线性方程拟合相关系数高,方便快捷。并借助微粒群算法,开发了基于微粒群的智能非线性拟合算法,拟合方程的相关系数相当高,甚至会出现过拟合现象。 3.多元拟合算法模块 根据最小二乘算法的原理开发了多元线性拟合算法,同时开发了能够指定变元次数的高次多元线性拟合。由于多元变量的情况下函数关系复杂,采用高次多元线性拟合能有效提高拟合效果而不会出现过拟合现象。同时针对每个变元可能最合适的拟合次数不一定都一样,开发了自适应高次多元拟合算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值