numpy.array() 中传入数组参数,可以是一维的也可以是二维三维的,numpy会将其转变成ndarray结构。
import numpy as np a = np.array([1, 2, 3, 4]) # [1 2 3 4] b = np.array([[1, 2, 3], [1, 2, 3]]) # 创建维度为2的数组 # [[1 2 3] # [1 2 3]] print(type(a)) # <class 'numpy.ndarray'>
ndarray.shape() 查看数组的形状
print(a.shape) # (4,) print(b.shape) # (2, 3)
ndarray.ndim 查看数组的维度
print(a.ndim) # 1 print(b.ndim) # 2
ndarray.size 查看元素的数量
print(b.size) # 6
ndarray.reshape(row,column) 修改数组的形状
print(b.reshape(3, 2)) # [[1 2] # [3 1] # [2 3]]
ndarray.dtype 查看数组元素的类型
print(type(b)) # <class 'numpy.ndarray'> print(b.dtype) # int32
切片索引
一维切片索引
vector = numpy.array([5, 10, 15, 20]) print(vector[0:3]) # 切片索引取值# [ 5 10 15]
利用返回值获取元素
import numpy vector = numpy.array([5, 10, 15, 20]) print(vector == 10) # [False True False False] # 利用返回值获取元素 print(vector[vector == 10])# [10]
二维切片索引
多维的切片是按照各个维度分别取的
import numpy as np a = np.arange(25).reshape(5, 5) print(a) # [[ 0 1 2 3 4] # [ 5 6 7 8 9] # [10 11 12 13 14] # [15 16 17 18 19] # [20 21 22 23 24]] # 取第1、2行,第2、3、4列 print(a[1:3, 2:5]) # 多维的切片是按照各个维度分别取 print(a[:, 2:5]) # 行取全部,列取第3-5
有时候将一个切片索引的参数改成None,那么ndarray的shape会变
print(a[:, None].shape) # (5, 1, 5)
None代表新增加一个维度,它有一个别称叫做newaxis,因为在第二维上用了None,所以数组的shape变成了(5, 1, 5)
我们在第三个维度上看看,shape会变成什么样子。
print(a[:, :, None].shape) # (5, 5, 1)
有时候数组的一个维度上是三个点,它是用省略号代替所有冒号,a[:, :, None]和a[…, None]的输出是一样的,就是因为…代替了前面两个冒号。
print(a[..., None].shape) # (5, 5, 1) print(a[:, :, None].shape) # (5, 5, 1)
创建数组的常用函数
reshape:生成0-14的15个数字,使用reshape(3,5)将其构造成一个三行五列的array
arr = np.arange(15).reshape(3, 5) # array([[0, 1, 2, 3, 4], # [5, 6, 7, 8, 9], # [10, 11, 12, 13, 14]])
squeeze函数:把shape中为1的维度去掉
arr = arr.reshape(1,1,-1) print(arr) # [[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]]] print(np.squeeze(arr)) # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14] print(np.squeeze(arr).shape) # (15,)
zero:生成指定结构的默认为0.的array
a = np.zeros((3,4)) # [[0. 0. 0. 0.] # [0. 0. 0. 0.] # [0. 0. 0. 0.]]
ones:生成一个三维的array,通过dtype指定类型
a = np.ones((2, 3, 4), dtype=np.int32) # 3行4列2层 # [[[1 1 1 1] # [1 1 1 1] # [1 1 1 1]] # # [[1 1 1 1] # [1 1 1 1] # [1 1 1 1]]]
numpy.
linspace
(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
在指定间隔[start, stop]之间返回均匀num个数字,如果endpoint是True,则不会取最后一个端点stop
np.linspace(2.0, 3.0, num=5) # array([ 2. , 2.25, 2.5 , 2.75, 3. ]) np.linspace(2.0, 3.0, num=5, endpoint=False) # array([ 2. , 2.2, 2.4, 2.6, 2.8])
arange指定范围和数值间的间隔array,注意范围包左不包右
np.arange(0, 10, 2) # [0, 2, 4, 6, 8, 10]
ndarray运算:矩阵之间的相加、相减、开根号、e平方
a = np.array([10,20,30,40]) b = np.array(4) print(a - b) # array([ 6, 16, 26, 36]) print(a**2) # array([ 100, 400, 900, 1600]) print(np.sqrt(B)) # array([[ 1.41421356, 0. ], # [ 1.73205081, 2. ]]) print(np.exp(B)) # array([[ 7.3890561 , 1. ], # [ 20.08553692, 54.59815003]])
向下取整np.floor()和向下取整np.ceil()
import numpy as np a = np.floor(10*np.random.random((2,2))) print(a) a = np.ceil(np.random.random((2,2))) print(a) # [[2. 8.] # [5. 0.]] ####################### # [[1. 1.] # [1. 1.]]
a.T 转置(行列变换)
a = np.array([[1,2],[3,4]]) print(a.T)# 转置 # [[1 3] # [2 4]]
a.resize(1,4) 变换结构
a = np.array([[1,2],[3,4]]) a.resize(1,4) prin(a) # array([[1, 2, 3, 4]])
np.clip()
numpy.clip(a, a_min, a_max, out=None)
把数组a中小于a_min的值都化为a_min,大于a_max的值都化为a_max
import numpy as np x=np.array([1,2,3,5,6,7,8,9]) print(np.clip(x,3,8)) # [3 3 3 5 6 7 8 8]
pad函数的用法
ndarray = numpy.pad(array, pad_width, mode, **kwargs)
参数:
- array为要填补的数组
- pad_width是在各维度的各个方向上想要填补的长度,如((1, 2),(1, 2)),表示:在二维数组array第一维(即行)前面填充1行,最后一行填充1行;在二维数组array第二维(即列)前面填充2列,最后面填充2列。
- 如果直接输入一个整数,则说明各个维度和各个方向所填补的长度都一样。
- mode为填补类型,即怎样去填补,有“constant”,“edge”等模式,如果为constant模式,就得指定填补的值,如果不指定,则默认填充0。
对于一维数组填充
import numpy as np array = np.array([1, 1]) # (1,2)表示在一维数组array前面填充1位,最后面填充2位 # constant_values=(0,2) 表示前面填充0,后面填充2 ndarray=np.pad(array,(1,2),'constant', constant_values=(0,2)) print(array) # [1 1] print(ndarray) # [0 1 1 2 2]
对二维数组填充
import numpy as np array = np.array([[1, 1],[2,2]]) """ ((1,1),(2,2)) 在二维数组array第一维(此处便是行)前面填充1行,最后面填充1行; 在二维数组array第二维(此处便是列)前面填充2列,最后面填充2列 constant_values=(0,3) 表示第一维填充0,第二维填充3 """ ndarray=np.pad(array,((1,1),(2,2)),'constant', constant_values=(0,3)) print(array) # [[1 1] # [2 2]] print(ndarray) # [[0 0 0 0 3 3] # [0 0 1 1 3 3] # [0 0 2 2 3 3] # [0 0 3 3 3 3]]
矩阵运算
矩阵拼接:numpy.concatenate((a1, a2, ...), axis=0)
参数:
a1、a2为待拼接的数组
axis: 0 则拼接第一维度(行),1 则拼接第二维度(列)
import matplotlib.pyplot as plt import numpy as np a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6]]) print(np.concatenate((a, b), axis=0)) # 3行2列 # [[1 2] # [3 4] # [5 6]] print(np.concatenate((a, b.T), axis=1)) # 2行3列 # [[1 2 5] # [3 4 6]]
concatenate([a, b])
a和b可以有一维size不同,但size不同的维度必须是要连接的维度
例如,a.shape为(4,5,6,10),b.shape为(4,5,6,20)
np.concatenate([a,b], axis=3) # 返回张量的shape为(4,5,6,30)
求和
matrix = numpy.array([[1,2,3], [4,5,6], [7,8,9]]) print(matrix.sum())# 45 print(matrix.sum(1))# 按每行求和 # [ 6 15 24] print(matrix.sum(0))# 按每列求和 # [12 15 18]
sum(1) 是 sum(axis=1)) 的缩写,1表示按照 x轴方向求和,0表示按照y轴方向求和
矩阵乘法
A*B A.dot(B) np.dot(A,B)
import numpy as np A = np.array([[1, 1], [0, 1]]) B = np.array([[2, 0], [3, 4]]) print(A*B) print(A.dot(B)) # A*B print(np.dot(A,B)) # A*B # [[2 0] # [0 4]]
矩阵求均值
numpy.mean(a, axis, dtype, out,keepdims )
mean()函数功能:求取均值
经常操作的参数为axis,以m * n矩阵举例:
- axis 不设置值,对 m*n 个数求均值,返回一个实数
- axis = 0:压缩行,对各列求均值,返回 1* n 矩阵
- axis =1 :压缩列,对各行求均值,返回 m *1 矩阵
a = np.array([[1, 2], [3, 4]]) print(a) # array([[1, 2], # [3, 4]]) print(np.mean(a)) # 2.5 print(np.mean(a, axis=0)) # axis=0,计算每一列的均值 # array([ 2., 3.]) print(np.mean(a, axis=1)) # 计算每一行的均值 # array([ 1.5, 3.5])
np.hstack(a,b) 横向相加
1 a = np.floor(10*np.random.random((2,2))) 2 b = np.floor(10*np.random.random((2,2))) 3 4 print(a) 5 print(b) 6 print(np.hstack((a,b))) 7 8 # [[ 2. 3.] 9 # [ 9. 3.]] 10 # [[ 8. 1.] 11 # [ 0. 0.]] 12 # [[ 2. 3. 8. 1.] 13 # [ 9. 3. 0. 0.]]
np.vstack(a,b) 纵向相加
1 print(np.vstack((a,b))) 2 3 # [[ 2. 3.] 4 # [ 9. 3.] 5 # [ 8. 1.] 6 # [ 0. 0.]]
np.hsplit(a,3) 矩阵纵向切割 把a竖切成3分
1 a = np.floor(10*np.random.random((2,12))) 2 print(a) 3 print(np.hsplit(a,3)) 4 5 # [[1. 4. 9. 1. 7. 2. 6. 3. 5. 4. 1. 8.] 6 # [0. 0. 4. 4. 7. 9. 1. 6. 7. 3. 9. 2.]] 7 8 9 # [array([[1., 4., 9., 1.], 10 # [0., 0., 4., 4.]]), 11 # array([[7., 2., 6., 3.], 12 # [7., 9., 1., 6.]]), 13 # array([[5., 4., 1., 8.], 14 # [7., 3., 9., 2.]])]
np.vsplit(a,3) 矩阵横向切割 把a横的切成3分
1 b = np.floor(10*np.random.random((12,2))) 2 print(b) 3 print(np.vsplit(b,3)) 4 5 # [[8. 0.] 6 # [9. 1.] 7 # [9. 1.] 8 # [7. 7.] 9 # [7. 1.] 10 # [9. 0.] 11 # [8. 0.] 12 # [7. 4.] 13 # [8. 8.] 14 # [7. 5.] 15 # [9. 8.] 16 # [1. 5.]] 17 18 [array([[8., 0.], 19 [9., 1.], 20 [9., 1.], 21 [7., 7.]]), 22 array([[7., 1.], 23 [9., 0.], 24 [8., 0.], 25 [7., 4.]]), 26 array([[8., 8.], 27 [7., 5.], 28 [9., 8.], 29 [1., 5.]])]
复制的区别
地址复制:通过 b = a 复制 a 的值,b 与 a 指向同一地址,改变 b 同时也改变 a。
1 a = np.arange(12) 2 b = a 3 print(a is b) 4 5 print(a.shape) 6 print(b.shape) 7 b.shape = (3,4) 8 print(a.shape) 9 print(b.shape) 10 11 # True 12 # (12,) 13 # (12,) 14 # (3, 4) 15 # (3, 4)
复制值:通过 a.view() 仅复制值,当对 c 值进行改变会改变 a 的对应的值,而改变 c 的 shape 不改变 a 的 shape,只有值会变,矩阵结构不变
1 a = np.arange(12)# [ 0 1 2 3 4 5 6 7 8 9 10 11] 2 c = a.view() 3 print(c is a) 4 5 c.shape = (2,6) 6 c[0,0] = 9999 7 8 print(a) 9 print(c) 10 11 # False 12 # [9999 1 2 3 4 5 6 7 8 9 10 11] 13 # [[9999 1 2 3 4 5] 14 # [ 6 7 8 9 10 11]]
完全拷贝:a.copy() 进行的完整的拷贝,产生一份完全相同的独立的复制
1 a = np.arange(12) 2 c = a.copy() 3 print(c is a) 4 5 c.shape = 2,6 6 c[0,0] = 9999 7 8 print(a) 9 print(c) 10 11 # False 12 # [ 0 1 2 3 4 5 6 7 8 9 10 11] 13 # [[9999 1 2 3 4 5] 14 # [ 6 7 8 9 10 11]]
numpy.random 随机模块
numpy的random模块用于生成随机数,
numpy.random.random(D0, d1,....dN)
生成(0, 1]之间指定结构的随机数
np.random.random((2, 3)) # [[ 0.86166627, 0.37756207, 0.94265883], # [ 0.9768257 , 0.96915312, 0.33495431]]
numpy.random.rand(D0, d1, ..., DN):
给定形状的数组,并在[0,1)之间
np.random.rand(3,2) # array([[ 0.14022471, 0.96360618], #random # [ 0.37601032, 0.25528411], #random # [ 0.49313049, 0.94909878]]) #random
numpy.random.randn(D0, d1, ..., DN):
从“标准正态分布”返回一个或多个样本
a = np.random.randn(2, 4) # [[-0.9115162 -1.32887292 -1.02910152 0.8023337 ] # [-1.14456771 -0.53251834 -1.75465906 -1.25668335]]
numpy.random.
normal
(loc = 0.0,scale = 1.0,size = None)
从正态分布中中抽取随机样本,其中均值为loc,方差为scale,size是形状
s = np.random.normal(0,1, 1000) print(s.shape) # (1000,)
numpy.random.randint(low, high=None, size=None, dtype='l'):
生成[low,high)的随机整数,取数范围:若high不为None时,取[low,high)之间随机整数,否则取值[0,low)之间随机整数。
a = np.random.randint(5, size=(2, 4)) # array([[4, 0, 2, 1], # [3, 2, 2, 0]]) b = np.random.randint(5,10,size=(2, 4)) # [[6 9 8 5] # [8 8 6 8]]
numpy.random.
uniform
(low=0.0, high=1.0, size=None)
功能:从一个均匀分布[low,high)中随机采样,注意定义域是左闭右开,即包含low,不包含high.
参数:
- low: 采样下界,float类型,默认值为0;
- high: 采样上界,float类型,默认值为1;
- size: 输出样本数目,为int或元组(tuple)类型,例如,size=(m,n,k), 则输出m*n*k个样本,缺省时输出1个值。
numpy.random.choice(a, size=None, replace=True, p=None):
从序列中获取元素,若a为整数,元素取值为np.range(a)中随机数;若a为数组,取值为a数组元素中随机元素。
numpy.random.shuffle(x):
对X进行重排序,如果X为多维数组,只沿第一条轴洗牌(横轴),输出为None。
arr = np.arange(9).reshape((3, 3)) # [[0 1 2] # [3 4 5] # [6 7 8]] np.random.shuffle(arr) # [[3 4 5] # [0 1 2] # [6 7 8]]
numpy.random.seed(seed=None) # 种下随机种子,使得生成的随机数相同
读取文件
numpy.gerfromtxt()用于读取文件,其中传入的参数依次是:
1、需要读取txt文件位置,此处文件与程序位于同一目录下
2、delimiter 分割的标记
3、dtype 转换类型,如果文件中既有文本类型也有数字类型,就先转成文本类型
import numpy world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",",dtype=str) print(type(world_alcohol)) print(world_alcohol) print(help(numpy.genfromtxt))
help(numpy.genformtxt)用于查看帮助文档