欧拉数 e=2.71828...(Eulers_Number)

From: http://blog.sina.com.cn/s/blog_5d03fffb0100xa6t.html

欧拉数 e=2.71828...(Eulers_Number)

1.      提起欧拉数,差不多都知道。但是在中学里通常不太喜欢它,因为使用的对数以10位底计算对数仿佛要亲切些,因为以10位底的对数叫做常用对数。另外一个叫 做自然对数的东西中学你少用,原因是自然对数的底到底是多少不知道。实际上,现在人类都不知道,只知道这个数e——欧拉数的计算方法,但是它的准确数字也 许我们永远也不知道。e是一个无理数,这一点应该是被林德曼证明了的,用现在的办法不难证明。

2.    微积分学中e首先是作为数列{(1+1/n)n}的极限来定义的,因为这个数列是一个单调上升有界数列。不过要注意的是,如果真的使用这个数列来计算e的近似值那时相当不理想的。我们知道
e ≈ 2.71828182845904523536028747135266249775724709369995957496696762772407\
6630353547594571382178525166427 (100位准确数字)。
      例如
(1+1/10)10=2.5937424601.
(1+1/50)50=2.6915880290736053938940873551532....
(1+1/100)100=2.70481382942152609326719471080....
(1+1/365)365=2.7145674820218743031938863066...
      不难看出n=365这种办法才有2位有效数字。后面将要学会一些新的算法,比如用
1+1/(1!)+1/(2!)+......+1/(n!). 其中 ! 表示阶乘。
      可以简单算出:
n=1,      e ≈2;
n=10,     e ≈2.7182818011463844797178130...;
n=50,     e ≈2.71828182845904523536028747135266249775724709369995957496696762772341\
9298053548538722835117660645043...;
n=365, e= ... 如上的100位数字,实际上可以得出701位有效数字。
 
3.    有一个关于财主的故事。说的是一个财主特别贪财,他喜欢放债。放出去的债年利率为100%,也就是说借1块钱,一年后要还给他2块钱。他想,干脆按照半年50%的利率算,结果
(1+50%)2=2.25, 也就是说借出1块钱,一年后要还2.25元。
      于是他进一步想,不如每天都来算利息,那利率就是1/365,这样
(1+1/365)365= 2.7145674820218743032…
      他还有一天算两次或更多的想法,不过他的管家劝他还是算了吧。尽管财主不死心,只好作罢。
 
4.  更为一般的,指数函数ex有一个所有函数都不具备的性质,那就是它的导数还是它自己。具备这样性质的函数唯此一个。
       另外,大家都经常用Google。有人说这个词实际上起源于Googol,它等于10100,就是1后面有100个0。有趣的是据Wiki介绍, Google在2004年首次公开募股,集资额不是通常的整头数,而是$2,718,281,828,这当然是取最接近整数的e*十亿美元。

转载于:https://www.cnblogs.com/ykmzy/articles/5331298.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,将微分方程转换成差分方程: $$\frac{y_{i+1}-y_i}{h} = 2\frac{y_i}{x_i} + x_i^2 e^{x_i}$$ 化简可得: $$y_{i+1} = y_i + h\left(2\frac{y_i}{x_i} + x_i^2 e^{x_i}\right)$$ 使用改进欧拉法(又称修正欧拉法)求解该差分方程,步骤如下: 1. 初始化 $y_0$ 和 $x_0$; 2. 循环计算 $y_{i+1}$,直到达到所需要的 $x$ 值。 具体计算过程如下: 当 $i=0$ 时,$y_0=1$,$x_0=1$。 当 $i=1$ 时,$x_1=x_0+h=1.025$,$y_1$ 的计算需要先计算 $y_{i+1}^*$: $$y_{i+1}^* = y_i + h\left(2\frac{y_i}{x_i} + x_i^2 e^{x_i}\right) = 1 + 0.025\left(2\frac{1}{1} + 1^2 e^{1}\right) = 4.0232$$ 然后再用 $y_{i+1}^*$ 来修正 $y_{i+1}$: $$y_{i+1} = y_i + \frac{h}{2}\left(2\frac{y_i}{x_i} + x_i^2 e^{x_i} + 2\frac{y_{i+1}^*}{x_{i+1}} + x_{i+1}^2 e^{x_{i+1}}\right)$$ 代入值计算可得: $$y_{1} = 1 + \frac{0.025}{2}\left(2\frac{1}{1} + 1^2 e^{1} + 2\frac{4.0232}{1.025} + 1.025^2 e^{1.025}\right) = 4.0605$$ 同理,当 $i=2$ 时,$x_2=x_1+h=1.15$,$y_2$ 的计算需要先计算 $y_{i+1}^*$: $$y_{i+1}^* = y_i + h\left(2\frac{y_i}{x_i} + x_i^2 e^{x_i}\right) = 4.0605 + 0.025\left(2\frac{4.0605}{1.025} + 1.025^2 e^{1.025}\right) = 7.7746$$ 然后再用 $y_{i+1}^*$ 来修正 $y_{i+1}$: $$y_{i+1} = y_i + \frac{h}{2}\left(2\frac{y_i}{x_i} + x_i^2 e^{x_i} + 2\frac{y_{i+1}^*}{x_{i+1}} + x_{i+1}^2 e^{x_{i+1}}\right)$$ 代入值计算可得: $$y_{2} = 4.0605 + \frac{0.025}{2}\left(2\frac{4.0605}{1.025} + 1.025^2 e^{1.025} + 2\frac{7.7746}{1.15} + 1.15^2 e^{1.15}\right) = 14.6805$$ 同理,可以继续计算其它 $y_i$ 的值。 当 $h=0.1$ 时,同理可得: $$y_1 = 3.0454$$ $$y_2 = 8.8407$$ $$y_3 = 22.4053$$ $$y_4 = 53.2339$$ $$y_5 = 124.0890$$ $$\cdots$$

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值