不知从什么时候就开始就接触自然对数e了,就像π一样,渐渐地植入脑海。见了”她“就像知道”水可以喝,可以解渴“一样,但没有探究过为什么可以解渴,为什么让”她“来到这个世界。
“她”有时候是那么的高雅优美,如常用的不定积分公式∫xndx=(n+1)-1xn+1+c,当n=-1时候,(n+1)-1xn+1+c就出现了“1/0”的现象。当然大家都知道∫x-1dx=ln|x|+c。多么漂亮的表达。
今天就Google了“她”,维基百科中说开始的时候“她”的代号并不是“e",而是由于欧拉的使用同时向他致敬于是就开始逐渐成为标准。
开始,伯努力(Bernoulli)研究“Compound interest”,假设开始存入的钱数为A,利率为1/n,那么一次收益后钱数为A(1+1/n),二次收益后钱数为A(1+1/n)(1+1/n),如此循环那么第n次收益后的钱数为A(1+1/n)n,那么当“无穷”下去后,即limn->+∞(1+1/n)n=?。最终的答案就是e。
还有维基百科中提到的“Derangements”,也十分有意思,将n个帽子,随机放入n个位置,假设每个帽子有一个预先设定的正确位置,那么所有帽子全都“入错”位置的概率是多少。我觉得,这和有n个整数,假定1,2,3,...,n。从小到大是一个自然的正确顺序,那么将这n个数打乱随机排列,那么每一个数都跑到“其他人”的位置上的概率是多少。
首先n个数有n!种排列,其中全都对就一种,其概率为1/n!。
除去全错误后的排列数为:
其中[1+(-1)]n=0。
全错误的概率为p=A/n!,有下列式子:
到n->+∞时,p=1/e。
参考: