一道有趣的概率题

  无聊的时候, 总喜欢拿着个硬币让人猜, 好验证他奇差的命中率。 某天, 一时兴起, 便有了以下对话:

“连续猜中两次的概率是...

1/4

“期望呢”

6

“是么”

“肯定是, 我还知道连续n次的期望和方差的计算方法呢” 

于是, 悲剧诞生了, 为了验证这个问题, 我拿起笔随手写了个方程, 结果却是三小时一去不复返.....

 

模型:  有一个抛硬币游戏, 当连续出现n次正面的时候结束, 设Pn, m)为m次时结束的概率, 求m的期望和方差

 

既然要求m的期望和方差, 那么我们就需要先分析一下Pn, m)吧, 首先, 我们可以从n = 2的情况分析,, 

m = 2, 则抛硬币的序列可能有1种(为简洁起见,以0为反面, 1为正面):

11

m = 3, 抛硬币的序列可能为1种:

011

m = 4, 抛硬币的序列可能为2种:

0011

1011

当 m = 5, 抛硬币的序列可能为3种:

00011

01011

10011

 

1, 1, 2, 3令你想到什么呢, 费波拉数列么, 是否有点惊喜的感觉呢, 当然, 这只是一个推测, 我们下面将会将会尝试证明这一点:

fm)为抛掷m次时结束的序列数, 

假设抛m次结束时, 序列为(S1S2....Sm(别想歪,by accident), 则子序列(S1, S2.。。Sm-n)中必然不会出现连续n1

如果S1 = 0, 那么,(S2, ....Sm)的可能情况为f(m - 1)

如果S1 = 1, 则S2 = 0, 那么(S3  ....Sm)的可能情况为fm-2),

所以fm) = f(m -1) + f(m - 2)

而边界条件为, {f(1) = 0;  f(2) = 1}

所以, P2, m) = P(2, m - 1) / 2 + P(2, m - 2) / 4

 

并且可以由此推广, 对于抛掷n次的情况, 有

f(n, m) = Σf(n, k), 其中k = n - m + 1.....m - 1

此外, 边界条件为, {f(n, m) = 0 if n > m;  f(n, n) = 1}

P(n, m) = ΣP(n, m - k) / 2k, 其中∈ [1, n]      1

P(n, n) = 1 / 2                                                 (2)

P(n, m) = 0  if n > m                     3

既然知道了P(n, m)的概率, 那么怎么求概率呢这里可以使用生成函数(如果不知道的话, 可以google了解一二)。
Pn, m)的生成函数为:

G(x) = ΣPn, k)xk  其中属于[1, +)

由式(1)(2) (3)可得

G(x) = ΣG(x)xk / 2k  + xn/2n       k = [1, n]               (4

所以

G(x) = (2 - x) * xn  / (2n+1(1 - x) + xn+1)               (5)

好了, 现在我们得到了生成函数G, 那么怎么求期望T我们知道

T = ΣkP(n, m) 

那么对G求导, 得到

G(x) = Σk * Pn, k)xk-1 , 所以

期望T = ΣkP(n, m) = G(1) = 2n+1 - 2

方差的话也很好计算, 有兴趣的话可自行算一下

转载于:https://www.cnblogs.com/sharky-nn/archive/2012/02/13/2350140.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值