两个人玩抛硬币的游戏,谁先抛到正面就获胜。那么先抛的人获胜概率为()。两种思路

本文通过两种思路分析了抛硬币决定胜负的游戏,计算出A获胜的概率为2/3,而B获胜的概率为1/3。第一种方法通过列举所有可能情况,第二种方法利用等比数列求和公式推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路一:把A、B都抛硬币一次看成一局游戏。
情况1: A第一次抛正面 -> 第一局中A胜 p= 1/2
情况2: A第一次抛反面、B抛正面 -> 第一局中B胜 p= (1/2) * (1/2)=1/4
情况3: A第一次抛反面、B抛反面 -> 第一局平局,进行下一局
可能重复多局才能定胜负,可知的是A胜与B胜的概率比例不变,等于第一局的概率比例。
故可得:
P(A胜)/ P(B胜)= 2
同时游戏事件集合中可以分为A胜、B胜这两个事件,概率和为1。
故可得:
P(A胜)+ P(B胜)= 1
根据两个公式可算出 P(A胜)=2/3
P(B胜)=1/3

思路二:计算A失败的总概率
首先我们会发现A抛硬币之后是不会失败的,只有当B抛到正面才代表A失败了。
第一次A抛硬币不会失败
第二次B抛到正面 A失败 概率1/4
第三次A抛硬币不会失败
第四次B抛到正面 A失败 概率1/4 * 1/4

所以有 P ( A 胜 ) = 1 − ∑ n = 1 ∞ ( 1 / 4 n ) = 2 / 3 P(A胜)=1-\sum_{n=1}^{\infty}(1/4^{n})=2/3 P(A)=1n=1(1/4n)=2/3

其中等比数列求和公式为
a 1 ( 1 − q n ) 1 − q \frac{a_{1}(1-q^{n})}{1-q} 1qa1(1qn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会写代码的孙悟空

赠人玫瑰 手有余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值