思路一:把A、B都抛硬币一次看成一局游戏。
情况1: A第一次抛正面 -> 第一局中A胜 p= 1/2
情况2: A第一次抛反面、B抛正面 -> 第一局中B胜 p= (1/2) * (1/2)=1/4
情况3: A第一次抛反面、B抛反面 -> 第一局平局,进行下一局
可能重复多局才能定胜负,可知的是A胜与B胜的概率比例不变,等于第一局的概率比例。
故可得:
P(A胜)/ P(B胜)= 2
同时游戏事件集合中可以分为A胜、B胜这两个事件,概率和为1。
故可得:
P(A胜)+ P(B胜)= 1
根据两个公式可算出 P(A胜)=2/3
P(B胜)=1/3
思路二:计算A失败的总概率
首先我们会发现A抛硬币之后是不会失败的,只有当B抛到正面才代表A失败了。
第一次A抛硬币不会失败
第二次B抛到正面 A失败 概率1/4
第三次A抛硬币不会失败
第四次B抛到正面 A失败 概率1/4 * 1/4
所以有 P ( A 胜 ) = 1 − ∑ n = 1 ∞ ( 1 / 4 n ) = 2 / 3 P(A胜)=1-\sum_{n=1}^{\infty}(1/4^{n})=2/3 P(A胜)=1−n=1∑∞(1/4n)=2/3
其中等比数列求和公式为
a
1
(
1
−
q
n
)
1
−
q
\frac{a_{1}(1-q^{n})}{1-q}
1−qa1(1−qn)