poj 1945 Power Hungry Cows A*

Description:

    就是给你一个数,你可以把它自乘,也可以把他乘或除以任意一个造出过的数,问你最多经过多少次操作能变换成目标数

思路:这题真的不怎么会啊。n = 20000,每一层都有很多个扩展状态,裸宽搜会被T,启发式函数又设计不出来……

看了一个Vjudge上的代码才知道这题怎么写。

就是每一个状态是由最多两个数转化而来的,所以可以把两个数看做一个状态。

用一个多元组$node(x,y,g,h)$表示状态,$x, y$分别表示两个数中的较大数和较小数,然后$g$表示转换成当前的状态需要多少步,$h$表示大数$x$转换到大于等于目标状态至少还要多少步。

启发式函数就是当前步数+预期至少需要的步数,即$g+h$

再用一个哈希表把二元组$(x,y)$与转换到这个状态需要几步对应起来,这样可以完成去重。当然也可以用$map$实现,但按照poj的尿性,很可能TLE。。

然后加几个剪枝,排除以下多余状态:

1.如果$x > 2*n$,这个都能理解吧。

2.如果$x=y$,因为该状态和一个$x$的状态对未来的贡献是等价的,反正自乘自除也能达到一样的效果,不管$y$取什么数,都比$x$与$y$相等时更优。

3.如果$x > n$ 并且 $y = 0$,因为这样的话该状态永远达不到$x=n$。

4.如果$n $ $mod$ $gcd(x,y) != 0$,因为这样的状态不管怎么乘怎么除,也永远达不到$x=n$。

5.如果$(x,y)$已经在哈希表里了且对应的$g$更小,这个也都能理解吧。

这样的话就应该能过了。

然后款搜的时候要注意下,枚举出一个二元组能变换出来的所有可能的二元组,这个具体可以看代码。

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdio>
 4 #include<queue>
 5 using namespace std;
 6 const int N = 30007, SIZE = 1e6 + 10;
 7 int n;
 8 struct node{
 9     int x, y, g, h;
10     bool operator < (const node &a)const{
11         return g + h == a.g + a.h ? h > a.h : g + h > a.g + a.h;
12     }
13 };
14 struct Node{
15     int to, next, w;
16 };
17 struct hash_map{
18     int head[N], now;
19     Node a[SIZE];
20     bool insert(int sta, int w){
21         int x = sta % N;
22         for(int i = head[x]; i; i = a[i].next){
23             if(a[i].to == sta){
24                 if(a[i].w <= w) return 0;
25                 a[i].w = w; return 1;
26             }
27         }
28         a[++now] = {sta, head[x], w};
29         head[x] = now;
30         return 1;
31     }
32 }dict;
33 priority_queue<node> heap;
34 node now;
35 int gcd(int a, int b){ return b ? gcd(b, a % b) : a;}
36 void che(int x, int y){
37     if(x < y) swap(x, y);
38     if(x > 2 * n) return ;
39     if(x > n && y == 0) return ;
40     if(x == y) return ;
41     if(n % gcd(x, y)) return;
42     if(!dict.insert(x * 50000 + y, now.g + 1)) return;
43     int h = 0, tx = x;
44     while(tx < n) h++, tx <<= 1;
45     heap.push({x, y, now.g + 1, h});
46 }
47 void A_star(){
48     heap.push({1, 0, 0, 0});
49     while(!heap.empty()){
50         now = heap.top(); heap.pop();
51         if(now.x == n || now.y == n){
52             printf("%d\n", now.g); break;
53         }
54         int a[2] = {now.x, now.y};
55         for(int i = 0; i < 2; i++)
56           for(int j = i; j < 2; j++)
57             for(int k = 0; k < 2; k++){
58                 int b[2] = {a[0], a[1]};
59                 b[k] = a[i] + a[j];
60                 che(b[0], b[1]);
61             }
62         che(now.x - now.y, now.y);
63         che(now.x, now.x - now.y);
64     }
65 }
66 int main(){
67     scanf("%d", &n);
68     A_star();
69     return 0;
70 }
View Code

 

转载于:https://www.cnblogs.com/Rorshach/p/9352275.html

这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值