counting


Time Limit: 5000 ms Memory Limit: 512 MB

Description

  数学老师走啦,英语老师来上课啦
  他的性格与众不同,又因为大家都是理科班的学生
  他希望大家在数字母的过程中领悟英语的快乐

  他用\(m\)种字母进行排列组合,
  得到了所有不同的,长度为\(n\)的字符串
  (不需要所有字母都出现在字符串中)
  对于每个字符串\(s\)
  定义\(C(s)\)\(s\)中出现次数最多的字母的出现次数
  那么问题来了
  所有的这些字符集大小为\(m\),长度为\(n\)的字符串中
  \(C(s)=k\)的有多少个呢

Input

  一行三个整数\(n,m,k\),分别表示字符集,长度和要求的\(C(s)\)

Output

  输出一行表示结果
  答案对\(998244353\)取模

Sample Input
3 2 2
Sample Output
6
HINT

  数据保证\(k≤n\)
  对于10%的数据,\(1≤n,m≤8\)
  对于30%的数据,\(1≤n,m≤200\)
  对于50%的数据,\(1≤n,m≤1000\)
  对于100%的数据,\(1≤n,m≤50000\)

样例解释:

  假设样例中的两个字母为\(a,b\)
  则满足条件的有\(aab,aba,abb,baa,bab,bba\)六个


Solution

  先考虑一下大力dp,\(f[i][j][k]\)表示确定完前\(i\)个字母的位置,占用了\(s\)中的\(j\)个位置,且此时\(C(s)<=k\)的方案数
\[ \begin{aligned} f[i][j][k]&=\sum\limits_{l=0}^{k}\binom j l f[i-1][j-l][k]\\ &=\sum\limits_{l=0}^{k}\frac{j!}{l!(j-l)!}f[i-1][j-l][k]\\ &=j!\sum\limits_{l=0}^{k}\frac{1}{l!}\cdot \frac{f[i-1][j-1][k]}{(j-l)!}\\ \\ \frac{f[i][j][k]}{j!}&=\sum\limits_{l=0}^{k}\frac{1}{l!}\cdot \frac{f[i-1][j-1][k]}{(j-l)!}\\ \end{aligned} \]
  那么最后的答案应该是\(f[m][n][k]-f[m][n][k-1]\)

  仔细观察一下这个dp式子,会发现这个dp其实跟\(k\)没有太大的关系(影响的只是枚举范围),而\(i\)这一维通过转移时候的继承是可以直接省掉的,然后又发现这个是个卷积的形式,那就大力构造一下多项式然后乘一波咯

  我们定义\(F_i(x)=\sum\limits_{j=0}^{k}\frac{f[i][j][k]}{j!}x^j\)\(G(x)=\sum\limits_{j=0}^{k}\frac{1}{j!}x^j\),那么上面式子的\(\frac{f[i][j][k]}{j!}\)就可以看做\(F_i(x)\)\(j\)次项的系数(生成函数的意味。。?),其他的部分同理,我们可以得到这样的式子:
\[ F_i(x)=F_{i-1}(x)G(x) \]
  最后的\(f[m][n][k]\)就是:\(F_m(x)\)\(n\)次项的系数*\(n!\)\(f[m][n][k-1]\)的计算同理,只要稍微改变一下\(k\)的值就好了,所以下面只讨论\(f[m][n][k]\)的求法:

  重新看回\(F_i(x)\)的那个递推式,不难发现其实\(F_m(x)=(F_0(x)G(x))^m\)(一路推上来的嘛)

  那就是做一个快速幂卷积就好了,注意一下每次乘完之后超过\(n\)的部分要赋成\(0\)

  (初始化的话因为只有\(f[0][0][k]=1\),所以\(F_0(x)=1\)

  

  代码大概长这个样子(NTT忘记swap这个错能犯一万年。。。菜菜发抖qwq)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#define G 3
#define vct vector<int>
using namespace std;
const int MAXN=5*(1e4)+10,MOD=998244353;
int ksm(int x,int y);
namespace NTT{/*{{{*/
    int W[MAXN*4][2],rev[MAXN*4];
    int len,invlen,invg;
    void init(){
        invg=ksm(G,MOD-2);
        for (int i=0;i<=17;++i){
            W[1<<i][0]=ksm(G,(MOD-1)/(1<<i));
            W[1<<i][1]=ksm(invg,(MOD-1)/(1<<i));
        }
    }
    void prework(int n){
        int bit=0;
        for (len=1;len<n;len<<=1,++bit);
        rev[0]=0;
        for (int i=1;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
        invlen=ksm(len,MOD-2);
    }
    void ntt(int *a,int op){
        int w,w_n,u,t;
        for (int i=0;i<len;++i) 
            if (rev[i]>i) swap(a[i],a[rev[i]]);
        for (int step=2;step<=len;step<<=1){
            w_n=op==-1?W[step][0]:W[step][1];
            for (int st=0;st<len;st+=step){//< !!
                w=1;
                for (int i=0;i<(step>>1);++i){
                    t=1LL*a[st+i+(step>>1)]*w%MOD;
                    u=a[st+i];
                    a[st+i]=(1LL*u+t)%MOD;
                    a[st+i+(step>>1)]=(1LL*u+MOD-t)%MOD;
                    w=1LL*w*w_n%MOD;
                }
            }
        }
        if (op==1) return;
        for (int i=0;i<len;++i)
            a[i]=1LL*a[i]*invlen%MOD;
    }
}/*}}}*/
int fac[MAXN],invfac[MAXN];
int base[MAXN*4],ret[MAXN*4];
int n,m,k;
void prework(int n);
void ksm_solve(int *a,int n,int y,int *ret);//n=len m=num k=appear times
int solve(int n,int m,int k);

int main(){
#ifndef ONLINE_JUDGE
    freopen("a.in","r",stdin);
#endif
    scanf("%d%d%d",&n,&m,&k);
    prework(n);
    int ansk,ansk1;
    ansk1=solve(n,m,k-1);
    ansk=solve(n,m,k);
    printf("%d\n",(1LL*ansk+MOD-ansk1)%MOD);
}

int ksm(int x,int y){
    int ret=1,base=x;
    for (;y;y>>=1,base=1LL*base*base%MOD)
        if (y&1) ret=1LL*ret*base%MOD;
    return ret;
}

void prework(int n){
    NTT::init();
    NTT::prework((n+1)*2);
    fac[0]=1;
    for (int i=1;i<=n;++i) fac[i]=1LL*fac[i-1]*i%MOD;
    invfac[n]=ksm(fac[n],MOD-2);
    for (int i=n-1;i>=0;--i) invfac[i]=1LL*invfac[i+1]*(i+1)%MOD;
}

int solve(int n,int m,int k){
    memset(base,0,sizeof(base));
    memset(ret,0,sizeof(ret));
    for (int i=0;i<=k;++i) base[i]=invfac[i];
    ksm_solve(base,n,m,ret);
    return 1LL*ret[n]*fac[n]%MOD;
}

void ksm_solve(int *a,int n,int y,int *ret){
    ret[0]=1;
    while (y){
        NTT::ntt(a,1);
        if (y&1){
            NTT::ntt(ret,1);
            for (int i=0;i<NTT::len;++i) ret[i]=1LL*ret[i]*a[i]%MOD;
            NTT::ntt(ret,-1);
            for (int i=n+1;i<NTT::len;++i) ret[i]=0;
        }
        for (int i=0;i<NTT::len;++i) a[i]=1LL*a[i]*a[i]%MOD;
        NTT::ntt(a,-1);
        for (int i=n+1;i<NTT::len;++i) a[i]=0;
        y>>=1;
    }
}

转载于:https://www.cnblogs.com/yoyoball/p/8907306.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值