题意:输入一个n,接下来输入一个长度为2*n的数组,代表n组坐标中的x,y,让你找出n组坐标,使得组成的矩形面积最小
首先对数组进行枚举找出满足条件的最小矩形:
ans=(a[n*2]-a[1])*(a[n+i-1]-a[i]),该等式为一条边最长另一条边最短的情况,乘号两边分别代表x的长度和y的长度,当一个数组中同一个数达到n个,也就使得a[n+i-1]-a[i]=0从而最小面积为0,而因为(a[n*2]-a[1])使得该边可以任意选取a(假设该边为x),另一条边(假设为y)则可以选择n+i-1到i上的元素,把问题可以转换成x轴选取n个元素与y轴选取n个元素,因为a[n*2]为最大的数,a[1]为最小的数,这使得无论数组有多么奇葩,都可以放在x轴上,我们再来看y轴,因为n+i-1-i=n-1,所以这些坐标都可以在矩形上
同时不要忘记ans=1LL*(a[n]-a[1])*(a[n*2]-a[n+1]);的情况
另外加一个read函数,否则大概率超时。。。。
#include <bits/stdc++.h> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 100010 int n,a[N<<1]; int main() { n=read(); for (int i=1;i<=n*2;i++) a[i]=read(); sort(a+1,a+n*2+1); long long ans=1ll*(a[n]-a[1])*(a[n*2]-a[n+1]); for (int i=2;i<=n;i++) ans=min(ans,1ll*(a[n*2]-a[1])*(a[n+i-1]-a[i])); cout<<ans; return 0; }