#动态规划 0-1背包问题空间复杂度优化

针对0-1背包问题,上一版本代码的时间复杂度为O(n*C),空间复杂度同样为O(n*C)。通过分析状态转移方程,发现只需要保持两行元素即可,优化后空间复杂度降低到O(2*C)。进一步优化,利用只依赖上一行元素的特点,减少到使用一行元素记录,达到空间复杂度O(C)。
摘要由CSDN通过智能技术生成

上一个版本的0-1背包代码的复杂度:时间复杂度O(n*C)空间复杂度O(n*C)

优化思路如下:

0-1背包问题:

F(n,C)考虑将n个物品放入背包为C 的背包,使得价值最大。

状态转移方程:F(i,c) = max(F(i-1 , c)  ,   v(i)+ F(i-1, c- w(i)  )

根据状态转移方程,第i行元素计算只依赖与i-1行元素。理论上我们只需要保持两行元素。

 

如上图,我们初始化后第一行存放0行元素,第二行存放1行元素。而第二行元素可以之间使用不再使用的0行元素。

发现规律:第一行一直为偶数行,第二行一直为奇数行,所以我们可以使用一个行数为2的二维数组来储存。

代码如下ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值