

动态规划解0-1背包问题

过程:

依次计算数组中的每一个值:当容量C超过了当前物品的重量时,说明当前物品可以放入背包中,那么就要考虑是否将该物品放入背包中,如果放入背包中,当前背包的总价值就为memo[i-1][j-w[i]]+v[i],如果不放入背包中,当前背包的总价值就为memo[i-1][j],使用这两种情况的最大值更新数组数据


代码:
#include <iostream>
#include <vector>
using namespace std;
/*
[1,2,3]
[6,10,12]
解:22
*/
//动态规划解
class Solution {
public:
int beibao(vector<int>& w,vector<int>& v, int C) {
int m = w.size();
if(m==0) return 0;
vector&

本文详细介绍了动态规划解决0-1背包问题的过程,包括基本的动态规划解法,以及如何通过优化减少空间复杂度,如两行空间轮流使用和仅用一行数组实现。此外,还讨论了在LeetCode 416题中0-1背包问题的应用,即分割等和子集的问题,并给出了解题思路和示例。
最低0.47元/天 解锁文章
3023

被折叠的 条评论
为什么被折叠?



