动态规划 0-1背包问题及优化

本文详细介绍了动态规划解决0-1背包问题的过程,包括基本的动态规划解法,以及如何通过优化减少空间复杂度,如两行空间轮流使用和仅用一行数组实现。此外,还讨论了在LeetCode 416题中0-1背包问题的应用,即分割等和子集的问题,并给出了解题思路和示例。

动态规划解0-1背包问题

过程:

依次计算数组中的每一个值:当容量C超过了当前物品的重量时,说明当前物品可以放入背包中,那么就要考虑是否将该物品放入背包中,如果放入背包中,当前背包的总价值就为memo[i-1][j-w[i]]+v[i],如果不放入背包中,当前背包的总价值就为memo[i-1][j],使用这两种情况的最大值更新数组数据

代码:

#include <iostream>
#include <vector>
using namespace std;
/*
[1,2,3]
[6,10,12]
解:22 
*/
//动态规划解 
class Solution {
public:
    int beibao(vector<int>& w,vector<int>& v, int C) {
		int m = w.size();
		if(m==0) return 0;
		vector&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值