BZOJ 3450: Tyvj1952 Easy [DP 概率]

本文介绍了一个基于$o$和$?$字符序列的算法问题,通过动态规划的方法求解期望得分。利用$(x+1)^2=x^2+2x+1$的公式,巧妙地维护了$x$及其平方的期望值,最终计算出整个序列的期望得分。

传送门

题意:$ox?$组成的序列,$?$等概率为$o\ or\ x$,得分为连续的$o$的长度的平方和,求期望得分


 

一开始没想出来,原因在于不知道如何记录长度

其实我们同时求得分和长度的期望就好了

$(x+1)^2=x^2+2x+1$

其实就是维护了$x$的期望和$x^2$的期望

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=3e5+5;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int n;
char s[N];
double f[N],d[N];
int main(){
    freopen("in","r",stdin);
    n=read();scanf("%s",s+1);
    for(int i=1;i<=n;i++){
        if(s[i]=='o') d[i]=d[i-1]+1,f[i]=f[i-1]+2*d[i]-1;
        else if(s[i]=='x') d[i]=0,f[i]=f[i-1];
        else d[i]=(d[i-1]+1)*0.5,f[i]=f[i-1]+(2*d[i-1]+1)*0.5;
    }
    printf("%.4lf",f[n]);
}

 

 

 

转载于:https://www.cnblogs.com/candy99/p/6506275.html

【2025亚太杯B题】辐射制冷技术的建模与优化——亚太地区大学生数学建模竞赛(思路、代码、论文持续更新中.......)内容概要:本文档围绕2025亚太杯B题“辐射制冷技术的建模与优化”展开,提供数学建模竞赛所需的思路、代码和论文写作支持,内容持续更新。文档列举了大量科研仿真资源,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个技术领域,重点服务于数学建模参赛者和技术研究人员。资源以Matlab和Python为主要实现工具,包含多种算法在实际问题中的应用案例,如粒子群优化、遗传算法、卡尔曼滤波、深度学习等,并提供配套代码和仿真模型。同时附有网盘链接,便于获取完整资料。; 适合人群:参加数学建模竞赛的本科生、研究生,具备一定编程基础(尤其是Matlab/Python)和数学建模能力的科研初学者;从事智能优化、电力系统、信号处理等相关领域的技术人员。; 使用场景及目标:①辅助完成亚太杯等数学建模竞赛题目,特别是B题辐射制冷技术的建模与优化;②为科研项目提供算法实现参考,提升仿真效率与模型精度;③学习多种智能算法在工程问题中的具体应用方式。; 阅读建议:建议按目录顺序系统浏览,结合提供的代码实例进行调试与复现,重点关注与自身研究方向相关的模块;充分利用网盘资源,对照思路与代码深化理解,提升建模与编程实战能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值