机器学习之决策树

机器学习中分类和预测算法的评估:

  • 准确率
  • 速度
  • 强壮行
  • 可规模性
  • 可解释性

1)什么叫做决策树

判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。

小明进行水上运动,是否享受运动取决于很多因素
 
     
样例天气温度湿度风力水温预报享受运动
1普通一样
2一样
3变化
4变化


     天气:晴,阴,雨

     温度:暖,冷
     湿度:普通,大
     风力:强,弱
     水温:暖,冷
     预报:一样,变化
     
     享受运动:是,否
 
     概念定义在实例(instance)集合之上,这个集合表示为X。(X:所有可能的日子,每个日子的值由 天气,温度,湿度,风力,水温,预          报6个属性表示。
     待学习的概念或目标函数成为目标概念(target concept), 记做c。
     c(x) = 1, 当享受运动时, c(x) = 0 当不享受运动时,c(x)也可叫做y
     x: 每一个实例
     X: 样例, 所有实例的集合
     学习目标:f: X -> Y

 

决策树学习的目的是为了产生一颗泛化能力强,即能够处理未见示例能力强的决策树。

3)决策树在机器学习的分类问题上是一个比较重要的算法

4)如何生成决策树

(1)决策树的生成是一个递归过程,在决策树基本算法有三种情形会导致返回

  a 、当前节点包含的样本全部属于同一个类别,无需划分。

  b、当前属性集为空或者样本在所有属性上取值相同无法划分。

  c、当前节点包含的样本合为空,不能划分。

 

(2)在构建决策树的时候,我们希望得到的决策树的分支结点所包含的样本尽可能属于同一个类别,就需要用到信息熵

          信息和抽象,如何度量?
          1948年,香农提出了 ”信息熵(entropy)“的概念
          一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者          
          是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少,计算如下
   假定当前的样本集合D中的第K类样本所占样本的比例为P x(x = 1,2,3...|Y|)则信息熵的计算如下:
    

        

    变量的不确定性越大,熵也就越大

 (3)构建决策树的算法

    a 、决策树归纳算法 (ID3)

          1970-1980, J.Ross. Quinlan, ID3算法
          选择属性判断结点
          信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D)获得信息越大越好
   Info(D)表示的是没有加入A的信息熵
   Info_A(D)表示有A加入的信息熵
          通过A来作为节点分类获取了多少信息如下图
 
  

  

类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048
 所以,选择age作为第一个根节点
 
重复。。。
 
 
          算法:
  • 树以代表训练样本的单个结点开始(步骤1)。
  • 如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
  • 否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
  • 所有的属性都是分类的,即离散值。连续属性必须离散化。
  • 对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
  • 算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
  • 递归划分步骤仅当下列条件之一成立停止:
  • (a) 给定结点的所有样本属于同一类(步骤2 和3)。
  • (b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
  • 这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结
  • 点样本的类分布。
  • (c) 分枝
  • test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
  • 创建一个树叶(步骤12)
    b、其他算法:
                 C4.5:  Quinlan
                Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
                 共同点:都是贪心算法,自上而下(Top-down approach)
                 区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
 
       如何处理连续性变量的属性? 
 
5) 树剪枝叶 (避免overfitting)
     5.1 先剪枝
     5.2 后剪枝
 
 
6) 决策树的优点:
     直观,便于理解,小规模数据集有效     
 
7)决策树的缺点:
     处理连续变量不好
     类别较多时,错误增加的比较快
     可规模性一般

转载于:https://www.cnblogs.com/hhxz/p/10590086.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值