QM3_Statistics Concepts and Market Returns

本文介绍了统计学的基本概念,包括描述性统计和推断性统计,测量尺度,频率分布,中心趋势(如平均数、中位数和众数),离散程度(如方差和标准差),相对离散程度(如变异系数和夏普比率),以及数据分布的偏度和峰度。
摘要由CSDN通过智能技术生成

 

 

 

Basic Concepts

Terms

Descriptive Statistics
  • Describes the important aspects of large data sets.
    • 统计
    • 概率
    • 分布
Inferential statistics
  • Involves making forecasts, estimates, or judgments about a larger group from the smaller group.
    • 预测
    • 估计
    • 判断

   

 

Measurement scales

      

 

考点:
  • 给描述, 判断是哪种尺度
  • 给尺度, 判断孰强孰弱

Frequency distribution

Central Tendency (第一维度,中心趋势)

Mean

Calculation
  • Arithmetic mean (算术平均)
    • Population Mean
      •  

    • Sample Mean
      •  

  • Geometric mean (几何平均)
    •  

  • Harmonic mean (调和平均, I级考试不考)
    •  

  • Weighted mean (加权平均)
    • 样本均值中相当于权重都是1/n, 而weighted mean就是不等权重(w1,w2,...wn).
Properties (性质)
  • Arithmetic mean : 单期收益率的表现
    • focus on average single-period performance
    • sensitive to extreme values
  • Geometric mean: 多期收益率的表现
    • focus on multi-period performance
  • Weighted mean: 多用于计算期望值 (算期望就是算加权平均)
    • userd to calculate the portfolio return/expected value based on probabilities
  • Harmonic Mean <= Geometric Mean <= Arithmetic Mean
  • Median 中位数 与 Mode 众数
    • 例: 一组数, 1,1,2,4,8.
    • median: 一共有五个数, 中间的数是2, 所以median是2. 若这个数组是1,2,4,8. 中位数则是(2+4)/2 = 3.
    • mode : 1出现了两次, 所以众数是1.

Quantile (分位点) **

Definition
  • A value at or below which a stated fraction of the data lies.
    • Quantiles 四分位点
    • Quintiles 五分位点
    • Deciles 十分位点
    • Percentiles 百分位点
    •  

Calculation
  • Step 1: formula for location of data in ascending order (必须先把所有数据从小到大排列)
  • Step 2: 用公式计算
  • 例: for data with 17 observations, find out the location of 3rd quintile.
    • 注:      1. value 中10和11的顺序写错了, 数值应该是要按顺序排列的.
      • 2. 如果要计算3rd quintile这个位置上的值的话, 应该是(20+23)/2.          
考点
  • 描述
    • 例: 第一个四分位点 --> 有25%的数小于第一个四分位点(因数据是ascending order排列的,所以是小于).
  • 计算
    • Ly = (n+1)y/100 (算location)
    • 算value (算特定分位点的数值)

金融有风险, 风险有不确定性, 所以用离散程度来度量风险, 方差或者标准差就是用来度量离散程度的;

金融中的收益用均值 mean 来度量.

Risk <-- uncertainty <-- dispersion <-- variance, standard deviation

 

 

Dispersion (第二维度,离散程度,即偏离均值的程度)

Absolute dispersion (绝对离散程度)

Range (范围)
  • Maximum Value - Minimum Value
Mean Absolute Deviation (MAD, 均值绝对偏差)
  • MAD <= 西格玛
  •  

Variance (方差)
  • MAD是绝对值, 不好计算,所以平方之后就引入了方差.
  • Population 总体
    •  

  • Sample 样本
    •  

Standard deviation (标准差, 把方差开根号)
  • Population 总体
    •  

  • Sample 样本
    •  

    • n-1 是为了满足无偏性或者自由度

          

 

Relative dispersion (相对离散程度) ***

Coefficient of variation (CV, 变异系数)
  • 每赚一块钱所承担的风险
  • Calculation
    •  

    • s: 样本标准差 (代表风险); x拔: 样本均值(代表收益)
  • Characteristics
    • CV has no units of measurement
    • a measure of risk per unit of mean return
    • the lower the better
Sharpe ratio (夏普比率)
  • 每承担单位风险所获得的超额收益率
  • Calculation
    •  

  • Characteristics
    • Sharpe ratio has no units of measurement
    • a measure of exccess return per unit of risk
    • the higher the better
考点
  • 计算

    • CV
    • Sharpe ratio
  • 描述

    • CV: 每赚一块钱所承担的风险
    • Sharpe ratio: 每承担单位风险所获得的超额收益
  • 性质
    • 变异系数CV越小越好
    • Sharpe ratio越大越好
Chebyshev's inequality (切比雪夫不等式)
  • 概念
    • For any distribution with finite variance, the minimum percentage of observations that lie within k standard deviation of the mean would be 1-1/k*k, given k>1.
    • 对任何一组观测值, 个休落在均值周围k个标准差之内的概率不小于1-1/k*k, 对任意k>1.
  • 例题
    •  

考点
  • 已知k, 需要计算概率1-1/k*k
  • 已知概率, 需要反算出k, 再算出区间
  • 已知区间, 需要计算k, 再算出概率

Skewness (第三维度,偏度) ***

 

肥尾: 取到极端值的概率较大

Kurtosis (第四维度,峰度) **

正态分布的峰度定义为3.

T-分布有特殊, 是低峰肥尾. ? 哪一章提到?

Z-分布

 

 

转载于:https://www.cnblogs.com/cheese320/p/9028063.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值