回文词
给出一个长度不超过5000的串s ,给s 添加尽量少的字母,使它变成一个回文词,即首尾对称的词。例如cbabd 可以添加两个字符变成dcbabcd, 它是首尾对称的。
输入:
第一行一个整数表示,串的长度。
第二行一个串。
输出:
一个数字,最少要加的字母数。
样例:
输入:
3
abb
输出:
1
网上的代码多为lcs,然而我觉得还有一种解法。
dp(i,j)将i——j这一段区间变成回文词的最小代价。
如果i==j,那么dp(i,j)=dp(i+1,j-1)+1;(这是特殊情况)
一般情况:
无论如何,我们都可以加一个与i,j配对。
所以dp(i,j)=min(dp(i,j-1)+1,dp(i+1,j)+1);
所以时间复杂度为n^2
空间复杂度为n^2
可以通过:下面是代码
#include<cstdio> #include<cstring> #include<algorithm> #define N 5000+10 #define INF 999999 using namespace std; int len; char s[N]; int f[N][N]; int dp(int i,int j) { if(i==j)return f[i][j]=0; if(j-i==1) { if(s[i]==s[j])return f[i][j]=0; else return f[i][j]=1; } if(f[i][j])return f[i][j]; if(s[i]==s[j]) return f[i][j]=dp(i+1,j-1); else return f[i][j]=min(dp(i+1,j)+1,dp(i,j-1)+1); } int main() { scanf("%d\n",&len); for(int i=1;i<=len;i++)s[i]=getchar(); memset(f,INF,sizeof(f)); printf("%d",dp(1,len)); return 0; }
当然,空间还可以通过滚动数组优化到o(n)