Description
现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角。每一步它向右跳奇数列,且跳到本行或相邻行。跳越期间,马不能离开棋盘。例如,当n = 3, m = 10时,下图是一种可行的跳法。
试求跳法种数mod 30011。
Input
仅有一行,包含两个正整数n, m,表示棋盘的规模。
Output
仅有一行,包含一个整数,即跳法种数mod 30011。
Sample Input
3 5
Sample Output
10
HINT
对于100%的数据,1 ≤ n ≤ 50,2 ≤ m ≤ 10^9
想法
其实就是矩阵随便转移一下就出来了。。。
分奇偶列考虑,记录每行奇数列及偶数列的sum
像我这么lazy的人,就直接一列列转移了。。。
转移矩阵:
\[ \begin{bmatrix} 0&0&0&…&0&1&0&0&…&0\\ 0&0&0&…&0&0&1&0&…&0 \\ 0&0&0&…&0&0&0&1&…&0 \\ …&&&&&…&&&&\\ 0&0&0&…&0&0&0&0&…&1 \\ 1&0&0&…&0&1&1&0&…&0 \\ 0&1&0&…&0&1&1&1&…&0 \\ 0&0&1&…&0&0&1&1&…&0 \\ …&&&&&…&&&&\\ 0&0&0&…&1&0&0&0&…&1 \\ \end{bmatrix} \quad \]
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define P 30011
using namespace std;
const int SZ = 105;
int n,m;
struct matrix{
int a[SZ][SZ];
matrix() { memset(a,0,sizeof(a)); }
void init() { for(int i=0;i<SZ;i++) a[i][i]=1; }
matrix operator * (const matrix &b) const{
matrix c;
for(int i=0;i<n*2;i++)
for(int j=0;j<n*2;j++)
for(int k=0;k<n*2;k++)
(c.a[i][j]+=a[i][k]*b.a[k][j])%=P;
return c;
}
matrix operator *= (const matrix &b) { return *this=*this*b; }
};
matrix Pow_mod(matrix x,int y){
matrix ret; ret.init();
while(y){
if(y&1) ret*=x;
x*=x;
y>>=1;
}
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
int ans;
matrix a,b;
for(int i=0;i<n;i++)
a.a[i+n][i]=a.a[i][n+i]=1;
for(int i=1;i<n-1;i++)
a.a[i+n][i+n]=a.a[i-1+n][i+n]=a.a[i+1+n][i+n]=1;
a.a[n][n]=a.a[2*n-1][2*n-1]=1;
if(n!=1) a.a[n+1][n]=a.a[2*n-2][2*n-1]=1;
b.a[0][0]=b.a[0][n]=b.a[0][n+1]=1;
if(m==2) { printf("%d\n",b.a[0][2*n-1]); return 0; }
b=b*(Pow_mod(a,m-3));
ans=b.a[0][n-1];
b*=a;
ans=(b.a[0][n*2-1]-ans+P)%P;
printf("%d\n",ans);
return 0;
}