【JZOJ3640】【COCI2014】utrka

Mission

这里写图片描述
2<=N<=300,2<=M<=N(N1)

Solution

SPFA。
由于只是二元关系,所以条件随便写。
具体来说,如果是uv
v的最大领先时间还不是正数,就要使得v的最大领先时间尽量大;
v的最大领先时间已经是正数,就要使得v的经过道路尽量少;

Code

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define ll long long
using namespace std;
const char* fin="utrka.in";
const char* fout="utrka.out";
const int inf=0x7fffffff;
const int maxn=307,maxm=maxn*maxn;
int n,m,i,j,k,l,o,ans1=inf,ans2=0;
int fi[maxn],ne[maxm],la[maxm],va[maxm],tot;
int head,tail,b[maxm*10],dis[maxn],val[maxn];
bool bz[maxn];
void add_line(int a,int b,int c){
    tot++;
    ne[tot]=fi[a];
    la[tot]=b;
    va[tot]=c;
    fi[a]=tot;
}
void add(int v,int Dis,int Val){
    if (val[v]<=0 && (val[v]<Val || val[v]==Val && dis[v]>Dis) || val[v]>0 && (dis[v]>Dis || dis[v]==Dis && val[v]<Val)){
        dis[v]=Dis;
        val[v]=Val;
        if (!bz[v]){
            bz[v]=true;
            b[++tail]=v;
        }
    }
}
void spfa(int st){
    int i,j,k;
    memset(dis,127,sizeof(dis));
    memset(val,128,sizeof(val));
    head=tail=0;
    add(st,0,0);
    while (head++<tail){
        for (k=fi[b[head]];k;k=ne[k])
            if (la[k]==st){
                if (val[b[head]]+va[k]>0){
                    if (ans1>dis[b[head]]+1){
                        ans1=dis[b[head]]+1;
                        ans2=val[b[head]]+va[k];
                    }else if (ans1==dis[b[head]]+1) ans2=min(ans2,val[b[head]]+va[k]);
                }
            }else add(la[k],dis[b[head]]+1,val[b[head]]+va[k]);
        bz[b[head]]=false;
    }
}
int main(){
    freopen(fin,"r",stdin);
    freopen(fout,"w",stdout);
    scanf("%d%d",&n,&m);
    for (i=1;i<=m;i++){
        scanf("%d%d%d%d",&j,&k,&l,&o);
        add_line(j,k,o-l);
    }
    for (i=1;i<=n;i++) spfa(i);
    printf("%d %d",ans1,ans2);
    return 0;
}

Warning

比赛的时候也想到是这样,但没敢打。T T
其实以前lilypad,已经是这样了。

转载于:https://www.cnblogs.com/hiweibolu/p/6714782.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值