Mission
2<=N<=300,2<=M<=N∗(N−1)
Solution
SPFA。
由于只是二元关系,所以条件随便写。
具体来说,如果是u⇒v。
若v的最大领先时间还不是正数,就要使得v的最大领先时间尽量大;
若v的最大领先时间已经是正数,就要使得v的经过道路尽量少;
Code
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define ll long long
using namespace std;
const char* fin="utrka.in";
const char* fout="utrka.out";
const int inf=0x7fffffff;
const int maxn=307,maxm=maxn*maxn;
int n,m,i,j,k,l,o,ans1=inf,ans2=0;
int fi[maxn],ne[maxm],la[maxm],va[maxm],tot;
int head,tail,b[maxm*10],dis[maxn],val[maxn];
bool bz[maxn];
void add_line(int a,int b,int c){
tot++;
ne[tot]=fi[a];
la[tot]=b;
va[tot]=c;
fi[a]=tot;
}
void add(int v,int Dis,int Val){
if (val[v]<=0 && (val[v]<Val || val[v]==Val && dis[v]>Dis) || val[v]>0 && (dis[v]>Dis || dis[v]==Dis && val[v]<Val)){
dis[v]=Dis;
val[v]=Val;
if (!bz[v]){
bz[v]=true;
b[++tail]=v;
}
}
}
void spfa(int st){
int i,j,k;
memset(dis,127,sizeof(dis));
memset(val,128,sizeof(val));
head=tail=0;
add(st,0,0);
while (head++<tail){
for (k=fi[b[head]];k;k=ne[k])
if (la[k]==st){
if (val[b[head]]+va[k]>0){
if (ans1>dis[b[head]]+1){
ans1=dis[b[head]]+1;
ans2=val[b[head]]+va[k];
}else if (ans1==dis[b[head]]+1) ans2=min(ans2,val[b[head]]+va[k]);
}
}else add(la[k],dis[b[head]]+1,val[b[head]]+va[k]);
bz[b[head]]=false;
}
}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
scanf("%d%d",&n,&m);
for (i=1;i<=m;i++){
scanf("%d%d%d%d",&j,&k,&l,&o);
add_line(j,k,o-l);
}
for (i=1;i<=n;i++) spfa(i);
printf("%d %d",ans1,ans2);
return 0;
}
Warning
比赛的时候也想到是这样,但没敢打。T T
其实以前lilypad,已经是这样了。