JZOJ 1425.【COCI2008】点歌

题意

给一个数轴,数轴上有n个点,第i个点的“位置”在ai。且只能够用长度为k的线段来覆盖。比如说一条长度为k的线段可以覆盖“位置”在 [x,x+k1] [ x , x + k − 1 ] 上的点。
问如果覆盖完所有的点,覆盖的“位置”最少有多少个。

题解

我一开始卡在了2个地方。
①贪心。但又不知道怎样贪心,而且这道题目的信息不足以解决贪心题。
②我曾经想到过 f[i] f [ i ] 表示第i个点被选,但是在转移的时候觉得如果两个点离得太近,可能跟前面已选的部分重合。
其实, f[i] f [ i ] 是设对了的。只不过可以这么做。用“选择一段连续的点”来转移。
f[i]=min(f[i],f[j1]+max(a[i]a[j]+1,k)) f [ i ] = m i n ( f [ i ] , f [ j − 1 ] + m a x ( a [ i ] − a [ j ] + 1 , k ) )
然后这就是 O(n2) O ( n 2 ) 的DP了。
有个max,看上去很难斜率优化。
但是,通过单调性可以将转移分为2部分。
f[i]=min(f[i],f[j1]+k),a[i]a[j]+1<k f [ i ] = m i n ( f [ i ] , f [ j − 1 ] + k ) , a [ i ] − a [ j ] + 1 < k
f[i]=min(f[i],f[j1]+a[i]a[j]+1),a[i]a[j]+1k f [ i ] = m i n ( f [ i ] , f [ j − 1 ] + a [ i ] − a [ j ] + 1 ) , a [ i ] − a [ j ] + 1 ≥ k
第①部分,显然 f[i]=f[qu[head]1]+k f [ i ] = f [ q u [ h e a d ] − 1 ] + k
第②部分看上去很难。但实际上只需要存下到目前为止 min(f[qu[head]1]a[qu[head]]) m i n ( f [ q u [ h e a d ] − 1 ] − a [ q u [ h e a d ] ] ) 即可。
然后 f[i]=min(f[qu[head]1]a[qu[head]])+a[i]+1 f [ i ] = m i n ( f [ q u [ h e a d ] − 1 ] − a [ q u [ h e a d ] ] ) + a [ i ] + 1
为什么?
看看这个式子也许会明白了。
f[i]=min(f[j1]a[j])+a[i]+1,a[i]a[j]+1k f [ i ] = m i n ( f [ j − 1 ] − a [ j ] ) + a [ i ] + 1 , a [ i ] − a [ j ] + 1 ≥ k
然后两部分取min即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 300005
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
int i,j,k,n,m,x;
int a[N],f[N],mx;
int qu[N],head,tail;
int Min(int x,int y){return x<y?x:y;}
int main(){
    scanf("%d%d",&m,&k);
    scanf("%d",&n);
    fo(i,1,n)scanf("%d",&a[i]);
    sort(a+1,a+n+1);
    mx=1000000001;
    memset(f,127,sizeof(f));
    f[0]=0;
    f[1]=k;
    qu[1]=1;
    head=1,tail=1;
    fo(i,2,n){
        while(head<=tail&&a[i]-a[qu[head]]>=k){
            mx=Min(mx,f[qu[head]-1]-a[qu[head]]);
            head++;
        }
        if(head<=tail)f[i]=Min(f[i],f[qu[head]-1]+k);
                 else f[i]=Min(f[i],f[i-1]+k);
        f[i]=Min(f[i],mx+a[i]+1);
        while(head<=tail&&f[qu[tail]]>f[i])tail--;
        qu[++tail]=i;
    }
    printf("%d",f[n]);
    return 0;
}
题目描述: 有一家餐馆,它的特色菜是一种叫做“Perket”的菜肴。这道菜由N种不同的香料组成,每种香料都有一个正整数的苦味值和一个正整数的美味值。每道菜需要用到至少一种香料,而且每种香料只能用一次。每道菜的苦味值是所有用到的香料的苦味值的乘积,美味值是所有用到的香料的美味值的和。现在,你需要计算出所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入格式: 第一行包含整数N。 接下来N行,每行包含两个整数,表示一种香料的苦味值和美味值。 输出格式: 输出一个整数,表示所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入样例: 3 1 7 2 6 3 8 输出样例: 1 解题思路: 这道题目可以使用二进制枚举的方法来解决。 首先,我们可以将所有的香料的苦味值和美味值分别存储在两个数组中。 然后,我们可以使用二进制枚举的方法来枚举所有的菜肴。具体来说,我们可以使用一个二进制数来表示一道菜肴,其中第i位为1表示这道菜肴中使用了第i种香料,为表示没有使用。 对于每一道菜肴,我们可以计算出它的苦味值和美味值,并将它们分别存储在两个数组中。 最后,我们可以枚举所有的菜肴,计算它们的苦味值和美味值的差的绝对值,并找到其中的最小值。 时间复杂度: 枚举所有的菜肴需要O(2^N)的时间复杂度,计算每道菜肴的苦味值和美味值需要O(N)的时间复杂度,因此总时间复杂度为O(2^N*N)。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值