上一篇简单了解了scrapy各个模块的功能:Scrapy框架初探 -- Dapianzi卡夫卡
在这篇通过一些实例来深入理解 scrapy 的各个对象以及它们是怎么相互协作的
settings.py
配置文件
#USER_AGENT = 'cats (+http://www.yourdomain.com)'
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36'
# Obey robots.txt rules 是否乖乖听从robot.txt
#ROBOTSTXT_OBEY = True
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32
# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs 请求间隔时间。需要看抓取时间需求,IP资源,目标网站反爬虫策略
DOWNLOAD_DELAY = 1
# The download delay setting will honor only one of: 二选一,按ip还是按域名设置请求上限
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
CONCURRENT_REQUESTS_PER_IP = 16
# Disable cookies (enabled by default) 自动处理cookie,需要登录会话
#COOKIES_ENABLED = False
COOKIES_ENABLED = True
# Disable Telnet Console (enabled by default)
TELNETCONSOLE_ENABLED = False
# Override the default request headers: 默认的http headers
DEFAULT_REQUEST_HEADERS = {
'Connection': 'Keep-Alive',
'Accept': 'text/html, application/xhtml+xml,*/*',
'Accept-Language': 'zh-CN',
'Accept-Encoding': 'gzip, deflate',
}
其实看注释就已经很清楚各个配置项是什么作用了,根据自己的需求,目标网站的反爬虫策略来配置就好了
另外可以任意添加自己自定义的配置项,比如MySQL配置:
# MYSQL CONFIG
MYSQL_HOST = '127.0.0.1'
MYSQL_PORT = 3307
MYSQL_USER = 'root'
MYSQL_PASS = ''
MYSQL_NAME = 'pets'
在项目中需要使用的时候,使用 crawler
对象。在 pipelines.py 中 的例子:
@classmethod
def from_crawler(cls, crawler):
'''static function'''
host = crawler.settings.get('MYSQL_HOST')
...
pipelines.py
管道处理
管道处理,根据字面意思当然是可以定义不同的逻辑,按顺序对 Items 进行处理。
管道顺序
管道的顺序需要在 settings.py
定义
ITEM_PIPELINES = {
# enable image pipeline
'cats.pipelines.FilterPipeline': 1,
'cats.pipelines.ImgsPipeline': 100,
'cats.pipelines.CatsPipeline': 300,
}
这里定义了3个管道,分别是 过滤去重 -> 下载图片 -> 保存到数据库 。后面的数字代表管道权重
@classmethod[from_crawler] 初始化管道
这个是从官方文档看到的,为了从 settings.py 读取相关配置,调用类方法来初始化 管道处理器。在使用数据库的时候很方便:
db = None
cursor = None
def __init__(self, conf):
try:
self.db = pymysql.connect(conf['host'], conf['user'], conf['pass'], conf['name'], port=conf['port'], charset='utf8')
except pymysql.OperationalError as e:
print ("Mysql Operation Error[%d]: %s" % tuple(e))
exit(0)
self.cursor = self.db.cursor()
def __del__(self):
self.db.close()
@classmethod
def from_crawler(cls, crawler):
'''static function'''
return cls({
'host' : crawler.settings.get('MYSQL_HOST'),
'port' : crawler.settings.get('MYSQL_PORT'),
'name' : crawler.settings.get('MYSQL_NAME'),
'user' : crawler.settings.get('MYSQL_USER'),
'pass' : crawler.settings.get('MYSQL_PASS')
})
process_item() 管道处理方法
这里是对 Item 进行处理的主要方法,数据库落地或者 DropItem() .处理完成记得 return item
sql = "SELECT id FROM cat_imgs WHERE img_hash=%s"
self.cursor.execute(sql, (item['img_hash'], ))
if self.cursor.fetchone():
spider.log('HASH exists.')
raise DropItem("HASH exists.")
else:
return item
ImagesPipeline 图片下载
【官方文档】Downloading and processing files and images
- 新建一个类继承 ImagesPipeline。因为不是普通的 pipeline,因此
__init__()
,process_item()
,spider_open()
,from_crawler()
等方法可能不适用 get_media_requests(self, item, info)
下载图片方法第三个参数info
存储了spider的信息,可以直接获取spider的属性:def get_media_request(self, item, info): name = info.spider.name ref = info.spider.ref return Request(item['img_src'], headers={"Referer": ref})
item_completed(self, results, item, info)
图片下载完成后的处理。results
参数始终是一个 list, 跟你定义的 Item 字段没有关系def item_completed(self, results, item, info): for ok,x in results: if not ok: raise DropItem("Item contains no files") item['img_src'] = x['path'] # 我的 item 结构中 只有一个图片资源 return item
Image 图片下载配置
IMAGES_STORE = r'C:\Users\admin\PycharmProjects\cats\cats\imgs'
# image thumb size
IMAGES_THUMBS = {
# 缩略图最大宽高
'small': (90, 90),
}
# image filter size,宽高小于这个尺寸不下载
IMAGES_MIN_HEIGHT = 120
IMAGES_MIN_WIDTH = 120
# redirect download url,有些图片链接包含重定向
MEDIA_ALLOW_REDIRECTS = True
spiders 爬虫逻辑
爬虫执行的命令scrapy crawl xxx
,这里的爬虫名字就是xxx_spider.py 里定义的 name 属性。 name 不需要要跟文件名一致
启动爬虫并传参
def __init__(self, page_range='1-10', *args, **kwargs):
super(xxxSpider, self).__init__(*args, **kwargs)
self.start, self.end = page_range.split('-')
启动命令大概是 scrapy crawl xxx -a page_range=1-5
。
传多个参数的方法暂时没有找到很好的解决方法,因此利用参数序列化成为一个参数的方式。不知道是不是因为window-cmd的关系。
yield
与 return
刚学python,因此对 yield 一开始没有概念。个人觉得在爬虫这个场景下,可以这么理解:
- Return : 立即返回一个 request 请求(或返回一个 item)
- Yield : 注册一个 request 请求(或一个 item),供后面的逻辑管道处理
因此需要返回多个请求(item)的用yield,相当于一个请求列表;确定只有一个请求,可以用return(yield 应该也没问题)
Xpath
与 css
- .extract() 获取一个目标列表,.extract_first() 获取列表第一个元素
- 获取标签内容:.css('div::text'),.xpath('//div/text()')
- 获取标签属性:.css('a::attr(href)'),.xpath('//a/@href')
- xpath 比 css 要更快一些,css 选择器会被解释为 xpath 选择器
-
注释内容无法通过 text() 获取,尝试通过获取整个元素再去掉 然后重新构造选择器,比如 抓取百度贴吧的时候它的源码是这样的:
<html>....</html> <code id="..." class="..."><!-- <ul class="..."> <li>......</li> </ul> --></code>
看起来像是用了某种前端框架,真实 html 内容被放在了
标签 并注释掉了。这时直接使用 xpath 是无法获取 code 里的 html 内容的
thread_list = res.xpath('//html/code[@id="pagelet_html_frs-list/pagelet/thread_list"]').extract_first() # 去掉注释 exp = re.compile(r'<code.*><!--(.*)--></code>', re.I|re.M|re.S) thread_list = re.sub(exp, r'\1', thread_list) # 重新加载内容 topic = Selector(text=thread_list).xpath('//a[@class="j_th_tit "]')
其他
- scrapy 为我们造好了绝大部分轮子,我们需要做的就是熟悉它。
- 需要自己开发的功能,主要是研究如何从目标站点的html结构中获取自己需要的内容,以及对应的存储逻辑
- 其他一些开发,可能是遇到特殊的反爬虫策略,也可能是对 scrapy 的部分功能还不够熟悉