scrapy框架的讲解和实例

一:在我安装和配置好python中scrapy这个强大的框架后,使用这个框架首先我们需要了解它内部文件的代码意义和各个文件的作用,
我首先在网上查找了它其中的各个文件的作用和每个文件所能实现的功能,根据我的查找资料总结如下:
参考:https://my.oschina.net/mickelfeng/blog/726460
1、Scrapy Engine(Scrapy引擎)

Scrapy引擎是用来控制整个系统的数据处理流程,并进行事务处理的触发。更多的详细内容可以看下面的数据处理流程。

2、Scheduler(调度)

调度程序从Scrapy引擎接受请求并排序列入队列,并在Scrapy引擎发出请求后返还给他们。

3、Downloader(下载器)

下载器的主要职责是抓取网页并将网页内容返还给蜘蛛( Spiders)。

4、Spiders(蜘蛛)

蜘蛛是有Scrapy用户自己定义用来解析网页并抓取制定URL返回的内容的类,每个蜘蛛都能处理一个域名或一组域名。换句话说就是
用来定义特定网站的抓取和解析规则。

蜘蛛的整个抓取流程(周期)是这样的:

首先获取第一个URL的初始请求,当请求返回后调取一个回调函数。第一个请求是通过调用start_requests()方法。该方法默认从start
_urls中的Url中生成请求,并执行解析来调用回调函数。
在回调函数中,你可以解析网页响应并返回项目对象和请求对象或两者的迭代。这些请求也将包含一个回调,然后被Scrapy下载,然后
有指定的回调处理。
在回调函数中,你解析网站的内容,同程使用的是Xpath选择器(但是你也可以使用BeautifuSoup, lxml或其他任何你喜欢的程序),
并生成解析的数据项。
最后,从蜘蛛返回的项目通常会进驻到项目管道。
5、Item Pipeline(项目管道)

项目管道的主要责任是负责处理有蜘蛛从网页中抽取的项目,他的主要任务是清晰、验证和存储数据。当页面被蜘蛛解析后,将被发送到
项目管道,并经过几个特定的次序处理数据。每个项目管道的组件都是有一个简单的方法组成的Python类。他们获取了项目并执行他们的
方法,同时他们还需要确定的是是否需要在项目管道中继续执行下一步或是直接丢弃掉不处理。

项目管道通常执行的过程有:

清洗HTML数据
验证解析到的数据(检查项目是否包含必要的字段)
检查是否是重复数据(如果重复就删除)
将解析到的数据存储到数据库中
6、Downloader middlewares(下载器中间件)

下载中间件是位于Scrapy引擎和下载器之间的钩子框架,主要是处理Scrapy引擎与下载器之间的请求及响应。它提供了一个自定义的代码的
方式来拓展Scrapy的功能。下载中间器是一个处理请求和响应的钩子框架。他是轻量级的,对Scrapy尽享全局控制的底层的系统。

7、Spider middlewares(蜘蛛中间件)

蜘蛛中间件是介于Scrapy引擎和蜘蛛之间的钩子框架,主要工作是处理蜘蛛的响应输入和请求输出。它提供一个自定义代码的方式来拓展
Scrapy的功能。蛛中间件是一个挂接到Scrapy的蜘蛛处理机制的框架,你可以插入自定义的代码来处理发送给蜘蛛的请求和返回蜘蛛获取
的响应内容和项目。

8、Scheduler middlewares(调度中间件)

调度中间件是介于Scrapy引擎和调度之间的中间件,主要工作是处从Scrapy引擎发送到调度的请求和响应。他提供了一个自定义的代码来
拓展Scrapy的功能
二:了解了scrapy的各个组件的作用和意义以后,我就开始学习了他们组合起来的工作原理,这能更好的让我对使用scrapy框架来进行编写
爬虫有更深的了解:
Scrapy的整个数据处理流程有Scrapy引擎进行控制,其主要的运行方式为:

1.引擎打开一个域名,时蜘蛛处理这个域名,并让蜘蛛获取第一个爬取的URL。
2.引擎从蜘蛛那获取第一个需要爬取的URL,然后作为请求在调度中进行调度。
3.引擎从调度那获取接下来进行爬取的页面。
4.调度将下一个爬取的URL返回给引擎,引擎将他们通过下载中间件发送到下载器。
5.当网页被下载器下载完成以后,响应内容通过下载中间件被发送到引擎。
6.引擎收到下载器的响应并将它通过蜘蛛中间件发送到蜘蛛进行处理。
7.蜘蛛处理响应并返回爬取到的项目,然后给引擎发送新的请求。
8.引擎将抓取到的项目项目管道,并向调度发送请求。
9.系统重复第二部后面的操作,直到调度中没有请求,然后断开引擎与域之间的联系。

三:在详细的了解了scrapy框架的工作原理后我是用它进行了几次爬虫,下面是根据一个实例代码进行更深入的了解:
所爬去的网站是百度贴吧,关于网络爬虫页面的信息:
参考:https://www.cnblogs.com/wumingxiaoyao/p/6183101.html
页面: http://tieba.baidu.com/f?kw=网络爬虫&ie=utf-8
数据:1.帖子标题;2.帖子作者;3.帖子回复数
通过观察页面html代码来帮助我们获得所需的数据内容。
1、工程建立
在控制台模式下进入你要建立工程的文件夹执行如下命令创建工程:

scrapy startproject hellospider

这里的scrapytest是工程名,框架会自动在当前目录下创建一个同名的文件夹,工程文件就在里边。
创建过程:
在这里插入图片描述
在这里插入图片描述
scrapy.cfg: 项目的配置文件
hellospider/: 该项目的python模块。之后您将在此加入代码。
hellospider/items.py:需要提取的数据结构定义文件。
hellospider/middlewares.py: 是和Scrapy的请求/响应处理相关联的框架。
hellospider/pipelines.py: 用来对items里面提取的数据做进一步处理,如保存等。
hellospider/settings.py: 项目的配置文件。
hellospider/spiders/: 放置spider代码的目录。
2.实现过程
①:在items.py中定义自己要抓取的数据:

import scrapy
class DetailItem(scrapy.Item):
    # 抓取内容:1.帖子标题;2.帖子作者;3.帖子回复数
    title = scrapy.Field()
    author = scrapy.Field()
    reply = scrapy.Field()

②:2、然后在spiders目录下编辑myspider.py那个文件:

import scrapy
from hellospider.items import DetailItem
import sys
 
 
class MySpider(scrapy.Spider):
    """
    name:scrapy唯一定位实例的属性,必须唯一
    allowed_domains:允许爬取的域名列表,不设置表示允许爬取所有
    start_urls:起始爬取列表
    start_requests:它就是从start_urls中读取链接,然后使用make_requests_from_url生成Request,
                    这就意味我们可以在start_requests方法中根据我们自己的需求往start_urls中写入
                    我们自定义的规律的链接
    parse:回调函数,处理response并返回处理后的数据和需要跟进的url
    log:打印日志信息
    closed:关闭spider
    """
    # 设置name
    name = "spidertieba"
    # 设定域名
    allowed_domains = ["baidu.com"]
    # 填写爬取地址
    start_urls = [
        "http://tieba.baidu.com/f?kw=%E7%BD%91%E7%BB%9C%E7%88%AC%E8%99%AB&ie=utf-8",
    ]
 
    # 编写爬取方法
    def parse(self, response):
        for line in response.xpath('//li[@class=" j_thread_list clearfix"]'):
            # 初始化item对象保存爬取的信息
            item = DetailItem()
            # 这部分是爬取部分,使用xpath的方式选择信息,具体方法根据网页结构而定
            item['title'] = line.xpath('.//div[contains(@class,"threadlist_title pull_left j_th_tit ")]/a/text()').extract()
            item['author'] = line.xpath('.//div[contains(@class,"threadlist_author pull_right")]//span[contains(@class ,"frs-author-name-wrap")]/a/text()').extract()
            item['reply'] = line.xpath('.//div[contains(@class,"col2_left j_threadlist_li_left")]/span/text()').extract()
            yield item

③:执行命令 scrapy crawl [类中name值]
由于第二步中我们在类MySpider下定义了 name =“spidertieba” ,所以执行命令:scrapy crawl spidertieba -o items.json
。 -o 指定文件。
这样我们就会看到此目录下生成了items.json文件

这样一个针对百度贴吧网络爬虫关键字的信息爬去已经完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值