很显然这是一道状压dp的题目
由于每个最优子结构和前两行有关,一个显而易见的想法是用三维dp[i][j][k]用来记录在第i行下为j状态,i - 1行为k状态时的最大值,然而dp[100][1 << 11][1 << 11]显然是要MLE的,我们可以想到用滚动数组优化,事实上确实可以用滚动数组优化。然而 在时间复杂度上 100 * 1024 * 1024 * 1024也是一个不可能补TLE的数字,一个不那么显然的办法是预处理出所有可行的状态,经过看题解或者写个暴力炸一下之后可以知道这些状态并不超过70,也就是说时间复杂度可以优化到100 * 70^3,这就看起来很合情合理了,数组也不用上滚动数组直接跑就好了。
剩下的就是实现的问题了。
用一个state数组预处理出所有的合法状态(在不考虑高地不高地的情况下)
用一个base数组预处理出所有高地的状态(高地为1,平地为0)当state中的状态 & 上base中的状态不为0时,代表有一个小兵站在了高地上,这是不被允许的,就要跳过这个状态。
用一个solider数组预处理出所有合法状态下的小兵数目,左右是省的每次都计算一下有几个小兵,不但让这个程序跑起来很快,也让我们看起来很帅。
附上这个解决方法的代码。
#include <map> #include <set> #include <cmath> #include <queue> #include <stack> #include <vector> #include <string> #include <cstdio> #include <cstdlib> #include <cstring> #include <sstream> #include <iostream> #include <algorithm> #include <functional> #define For(i, x, y) for(int i=x; i<=y; i++) #define _For(i, x, y) for(int i=x; i>=y; i--) #define Mem(f, x) memset(f, x, sizeof(f)) #define Sca(x) scanf("%d", &x) #define Scl(x) scanf("%lld",&x); #define Pri(x) printf("%d\n", x) #define Prl(x) printf("%lld\n",x); #define CLR(u) for(int i = 0; i <= N ; i ++) u[i].clear(); #define LL long long #define ULL unsigned long long #define mp make_pair #define PII pair<int,int> #define PIL pair<int,long long> #define PLL pair<long long,long long> #define pb push_back #define fi first #define se second using namespace std; typedef vector<int> VI; const double eps = 1e-9; const int maxn = 110; const int INF = 0x3f3f3f3f; const int mod = 1e9 + 7; inline int read() { int now=0;register char c=getchar(); for(;!isdigit(c);c=getchar()); for(;isdigit(c);now=now*10+c-'0',c=getchar()); return now; } int N,M; char MAP[maxn][15]; int state[maxn]; //所有合法状态 LL dp[2][maxn][maxn]; //在i行第j状态以及i- 1行第k状态下的最大值 LL solider[maxn]; //在这个状态下的士兵 int base[maxn]; // 原地图的的第i个原状态 int cnt; //合法状态的数目 int main() { while(~scanf("%d%d",&N,&M)){ Mem(base,0); Mem(solider,0); Mem(state,0); Mem(dp,0); cnt = 0; For(i,1,N){ scanf("%s",&MAP[i]); // cout << MAP[i] << endl; for(int j = 0; j < M ; j ++){ if(MAP[i][j] == 'H') base[i] += 1 << j; } } for(int i = 0 ; i < 1 << M; i ++){ if((i & (i << 1)) || (i & (i << 2))) continue; state[++cnt] = i; int k = i; while(k){ solider[cnt] += k & 1; k >>= 1; } } For(i,0,cnt){ // cout << solider[i] << endl; if(base[1] & state[i]) continue; dp[1][i][0] = solider[i]; } For(i,0,cnt){ if(base[2] & state[i]) continue; For(j,1,cnt){ if(base[1] & state[j] || state[i] & state[j]) continue; dp[0][i][j] = max(dp[1][j][0] + solider[i],dp[0][i][j]); } } For(i,3,N){ For(j,0,cnt){ if(base[i] & state[j]) continue; For(k,0,cnt){ if(base[i - 1] & state[k] || state[j] & state[k]) continue; For(p,0,cnt){ if(base[i - 2] & state[p] || state[p] & state[k] || state[j] & state[p]) continue; dp[i & 1][j][k] = max(dp[i & 1][j][k],dp[i + 1 & 1][k][p] + solider[j]); } } } } LL MAX = 0; For(i,0,cnt){ For(j,0,cnt){ MAX = max(MAX,dp[N & 1][i][j]); } } Prl(MAX); } return 0; }
事实上除了以上这种巧妙地方法之外,我们依然有更暴力但是却更难写的方法,就是将二进制状态压缩改为三进制的状态压缩。
我们假设在放置一个小兵之后会产生一个“缓冲带”,导致下面的这个状态变为2,下下面的状态变为1,再下面变回0,意味着缓冲区结束,这里可以继续放置小兵。但是仔细一想发现这样构成的状态并不是那么好写状态转移方程,我们从记忆话搜索里得到灵感,考虑直接dfs暴搜。
由于经过了状态压缩,dfs的状态转移并不那么困难,我们用一个整数cur来表示此时的状态,用一个next来表示下一行的状态,
每次的转移主要是横向的转移,当到了行末尾的时候转移到下一行,此时cur的值变为next,next的值变为0,到最后一行时开始返回,更新回答案。
像这样的状态表示比较复杂,冗余的不合法状态较多的题目,不一定要写出确切的状态转移方程,而用dfs也可以很好的解决问题,不过在这题上的效率并不是很理想,上面的400ms,这个1600ms,主要提供遇到问题的解决思路。
#include <map> #include <set> #include <cmath> #include <queue> #include <stack> #include <vector> #include <string> #include <cstdio> #include <cstdlib> #include <cstring> #include <sstream> #include <iostream> #include <algorithm> #include <functional> #define For(i, x, y) for(int i=x; i<=y; i++) #define _For(i, x, y) for(int i=x; i>=y; i--) #define Mem(f, x) memset(f, x, sizeof(f)) #define Sca(x) scanf("%d", &x) #define Scl(x) scanf("%lld",&x); #define Pri(x) printf("%d\n", x) #define Prl(x) printf("%lld\n",x); #define CLR(u) for(int i = 0; i <= N ; i ++) u[i].clear(); #define LL long long #define ULL unsigned long long #define mp make_pair #define PII pair<int,int> #define PIL pair<int,long long> #define PLL pair<long long,long long> #define pb push_back #define fi first #define se second using namespace std; typedef vector<int> VI; const double eps = 1e-9; const int maxn = 110; const int INF = 0x3f3f3f3f; const int mod = 1e9 + 7; inline int read() { int now=0;register char c=getchar(); for(;!isdigit(c);c=getchar()); for(;isdigit(c);now=now*10+c-'0',c=getchar()); return now; } int N,M; int dp[maxn][60000]; char MAP[maxn][15]; int power[10]={1,3,9,27,81,243,729,2187,6561,19683}; int getbit(int i,int pos){ if(pos == 0) return i % 3; if(pos >= M) return 0; if(i >= power[pos]){ return (i / power[pos]) % 3; } return 0; } //x,y为横纵坐标,cur为上两行的状态,next为下一状态,cnt为记录x行已放置的 void dfs(int x,int y,int cur,int next,int cnt) { if(!y){ //刚进入当前行 if(dp[x][cur] != -1) return; dp[x][cur] = 0; } if(y >= M){ //已经到行末尾 if(x < N - 1){ dfs(x + 1,0,next,0,0); //转变为下一行,下一行状态转变为当前状态,下一行状态初始化为0 dp[x][cur] = max(dp[x][cur],cnt + dp[x + 1][next]); //从上一个状态更新这个状态 }else{ dp[x][cur] = max(dp[x][cur],cnt); //由于没有下一个状态,这个状态的最大值就是他自己 } return; } int i = getbit(cur,y); //这个点的值 if(!i && MAP[x][y] == 'P'){ //这个点可放小兵 int j = 2 * power[y],k; //在这个点放了小兵之后next要增加的值,也就是下边增加一个2 k = getbit(cur,y + 1); if(k == 2){ //由于这个点的右边上面刚放过一个小兵,右边要增加1 j += power[y + 1]; } k = getbit(cur,y + 2); //同理这个点右边的右边的上面放过一个小兵 if(k == 2){ j += power[y + 2]; } dfs(x,y + 3,cur,next + j,cnt + 1); //这个点放了小兵 dfs(x,y + 1,cur,next,cnt); //这个点不放小兵 return; } if(i == 2) dfs(x,y + 1,cur,next + power[y],cnt); //下面为1 else dfs(x,y + 1,cur,next,cnt); //下面为0 } int main() { while(~scanf("%d%d",&N,&M)){ for(int i = 0; i < N ; i ++){ scanf("%s",MAP[i]); } Mem(dp,-1); dfs(0,0,0,0,0); Pri(dp[0][0]); } return 0; }