OpenMMlab 人体姿态估计与MMPose

课程只是大致介绍了在2D和3D的姿态估计,评估指标以及DensePose与人体参数化模型。之前没有相关内容的知识架构,本次学习全当是拓展知识面。

2D姿态估计主要是分为:基于回归图和基于热力图。

其中Residual Log-Likelihood Estimation(RLE) (2021)的核心思路为对关键点的位置进行更准确的概率建模,从而提高位置预测的精度。它将经典的高斯分布的假设替换成了关键点的概率分布,通过最大似然拟合最优的位置分布。或许此idea也可以嵌套在其他的模型,从简单分布的随机变量映射成复杂分布的随机变量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值