java算法:分治法
分治法用于算法设计的最重要实例:在一个程序中使用两个或多个递归调用。
例1:用分治法找到最大值
Java代码
staticdoublemax(doublea[],intl,intr){
if(l == r){
returna[l];
}
intm = (l + r)/2;
doubleu = max(a, l , m);
doublev = max(a, m +1, r);
if(u > u){
returnu;
}else{
returnv:
}
}
static double max(double a[], int l, int r){
if(l == r){
return a[l];
}
int m = (l + r)/2;
double u = max(a, l , m);
double v = max(a, m + 1, r);
if(u > u){
return u;
}else{
return v:
}
}
分治法比简单的循环算法更加快捷。
一个有趣的例子:3个柱子和N个与柱子配套的盘子,盘子大小不同,从N(大)到1(小)的顺序放在其中一个柱子上。任务:移动到最右边的柱子上。一次只能移动一个,大的盘子不能放在小的盘子上。
例2:汉诺塔问题的递归分治法所产生的解决方法要移动2的N次方-1次。
Java代码
staticvoidhannoi(intn,intd){
if(n ==0){
return;
}
hanoi(n -1, -d);
shift(n, d);
hanoi(n -1, -d);
}
static void hannoi(int n, int d){
if(n == 0){
return;
}
hanoi(n - 1, -d);
shift(n, d);
hanoi(n - 1, -d);
}
例3:用分治法画刻尺
Java代码
staticvoidrule(intl,intr,inth){
intm = (l + r)/2;
if(h >0){
rule(l, m, h -1);
mark(m, h);
rule(m, r, h -1);
}
}
static void rule(int l, int r, int h){
int m = (l + r)/2;
if(h > 0){
rule(l, m, h - 1);
mark(m, h);
rule(m, r, h - 1);
}
}
对于任意给定的i,有更简单的方法来计算第i个标记长度:即i的二进制尾数0的个数。
Java代码
00001
000101
00011
001002
00101
001101
00111
010003
01001
010101
01011
011002
01101
011101
01111
100004
10001
100101
...
0 0 0 0 1
0 0 0 1 0 1
0 0 0 1 1
0 0 1 0 0 2
0 0 1 0 1
0 0 1 1 0 1
0 0 1 1 1
0 1 0 0 0 3
0 1 0 0 1
0 1 0 1 0 1
0 1 0 1 1
0 1 1 0 0 2
0 1 1 0 1
0 1 1 1 0 1
0 1 1 1 1
1 0 0 0 0 4
1 0 0 0 1
1 0 0 1 0 1
...
例4:画刻尺的非递归程序
Java代码
staticvoidrule(intl,intr,inth){
for(intt =1, j =1; t <= h; j += j, t++){
for(inti =0; l +j + i <= r; i += j + j){
mark(l + j + i, t);
}
}
}
static void rule(int l, int r, int h){
for(int t = 1, j = 1; t <= h; j += j, t++){
for(int i = 0; l +j + i <= r; i += j + j){
mark(l + j + i, t);
}
}
}
一般来说,许多递归程序取决于解决子问题的特定顺序,但对于另一些算法(用分治法找最大值),则与解决子问题的顺序无关。对于这样的算法,唯一的限制条件是我们再解决主问题之前必须先解决子问题。什么时候可以重排计算是很重要的。在考虑并行处理器上实现算法时,这个问题就更重要了。自底向上的方法与一般算法设计的思路是一样的,即总先解决那些容易处理的子问题,然后把这些解结合起来,从而解决稍大的子问题,直到整个问题得于解决,这种方法就是分治法。
快速排序和折半查找是基本的分治法思想的变体,即把问题分成大小为k-1和N-k的子问题,k值由输入决定。