安振平老师的4909号不等式问题的证明

题目:已知$a,b,c\in R$,求证:$(1+a^2)(1+b^2)(1+c^2)(1+a^2b^2c^2)\geq (1+abc(a+b+c))^2$.

证明:因为$(1+a^2)(1+b^2)(1+c^2)(1+a^2b^2c^2)-(1+abc(a+b+c))^2$

$=\frac{1}{2}a^2b^2c^2[(a+b)c-2]^2+\frac{1}{2}(2abc-a-b)^2+a^2b^2(abc^2-1)^2+(a^2b^2-1)^2c^2+\frac{1}{2}(a^2b^2c^4+2c^2+1)(a-b)^2\geq 0$

所以

$(1+a^2)(1+b^2)(1+c^2)(1+a^2b^2c^2)\geq (1+abc(a+b+c))^2$.

 

转载于:https://www.cnblogs.com/ydwu/p/10515630.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值