全纯函数导数的两道习题

题目来自史济怀、刘太顺《复变函数》50页的最后两个习题:

3.设$f$在$B(0,1)\cup\{1\}$上全纯,并且$$f(B(0,1))\subset B(0,1),f(1)=1$$

证明$f'(1)\geq0$.

分析    这个题目的几何意义是很清楚的,在$1$附近不能发生旋转,否则无法保证象集还在单位圆内.下面给出一个解析的证明:

在$1$附近我们有$$f(z)=1+f'(1)(z-1)+o(z-1)$$

注意到$|f(z)|<1$,从而\begin{align*}f(z)\overline{f(z)}&=\left(1+f'(1)(z-1)+o(z-1)\right)\left(1+\overline{f'(1)(z-1)}+\overline{o(z-1)}\right)\\&=1+2{\rm Re}\left(f'(1)(z-1)\right)+o(|z-1|)<1\\ \Rightarrow {\rm Re}\left(f'(1)e^{i\theta}\right)+o(1)&<0\tag{1}\end{align*}

其中$\theta={\rm arg}(z-1)$,显然$z$落在$1$在$B(0,1)$中的充分小的邻域时$$\theta\in(-\pi,-\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]$$

在(1)中令$\theta=\pi$得$${\rm Re}f'(1)\geq 0$$

再分别让$\theta\to\pm\frac{\pi}{2}$得$${\rm Re}if'(1)\leq0,-{\rm Re}if'(1)\leq0$$

结合三个式子显然$f'(1)\geq0$.

 

4.设$f\in H(B(0,1))$,如果存在$z_{0}\in B(0,1)\setminus\{0\}$使得$f(z_{0})\neq0,f'(z_{0})\neq0$且$$|f(z_{0})|=\max\limits_{|z|\leq |z_{0}|}|f(z)|$$

那么$$\frac{z_{0}f'(z_{0})}{f(z_{0})}>0.$$

证明    考虑函数$$g(z)=\frac{f(zz_{0})}{f(z_{0})},z\in B(0,1)\cup\{1\}$$再利用上题结论即可.

转载于:https://www.cnblogs.com/xiaoxixi/p/4203334.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值