P2865 [USACO06NOV]路障Roadblocks

题目传送门

这题题意很明确,就是求图的次短路,我用了一个非常奇葩的方法:伟大的分类讨论;

注意,以下说明均针对无向图

首先,图的次短路只有2种情况:

1)1次最短路+乱转(源点->最短路上离其他点最近的点->离它最近的点->返回这个点->终点)

2)直接次短路(依次屏蔽每一条边)

可以证明,无向图的次短路仅有这2种情况,如有错误,请读者在评论区指出

2的情况非常好做,仅需依次屏蔽每一条边(最短路上的)后求最短路就好了,1号情况可以邻接表打擂台去取最小值即可

请读者务必好好理解最短路路径记忆的方法,非常非常重要!!!

参考程序如下:

 

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
int n,m,x,y,z,v[200005],w[200005],nxt[200005],head[200005],cnt,dist[200005],pre[200005],edge[200005];
int minn1,lesss,ans,minn2,minn3,ans1=21374404,ans2,ans3,minn4;
int path[100000],num;
bool vis[200005];
void add(int a,int b,int c)
{
    v[++cnt]=b;
    w[cnt]=c;
    nxt[cnt]=head[a];
    head[a]=cnt;
}
void spfa(int s)
{
    memset(dist,20,sizeof(dist));
    queue<int>q;
    q.push(s);
    dist[s]=0;
    vis[s]=1;
    while(!q.empty())
    {
        int c=q.front();
        q.pop();
        vis[c]=0;
        for(int i=head[c];i;i=nxt[i])
        {
            int y=v[i];
            if(dist[y]>dist[c]+w[i])
            {
                pre[y]=i;edge[y]=c;
                dist[y]=dist[c]+w[i];
                if(!vis[y])
                {
                    q.push(y);
                    vis[y]=1;
                }
            }
        }
    }
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        cin>>x>>y>>z;
        add(x,y,z);
        add(y,x,z);
    }
    spfa(1);
    minn3=dist[n]*3;
    int s=21370444;
    for(int i=head[n];i;i=nxt[i])
    {
        s=min(s,w[i]*2);
    } 
    minn2=dist[n]*2+s;
    s=21370444;
    for(int i=head[1];i;i=nxt[i])
    {
        s=min(s,w[i]*2);
    } 
    minn4=dist[n]*2+s;
    minn1=dist[n];
    int now=n;
    while(now!=1)
    {
        path[++num]=pre[now];
        now=edge[now];
    }
    for(int i=1;i<=num;i++)
    {
        int s=w[path[i]];
        w[path[i]]=99999999;
        spfa(1);
        lesss=dist[n];
        if(lesss!=minn1)ans1=min(ans1,lesss);
        w[path[i]]=s;
    }
    ans=min(ans1,min(minn2,min(minn3,minn4)));
    cout<<ans;
    return 0;
}

 

  

 

转载于:https://www.cnblogs.com/szmssf/p/10999723.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值