这题题意很明确,就是求图的次短路,我用了一个非常奇葩的方法:伟大的分类讨论;
注意,以下说明均针对无向图
首先,图的次短路只有2种情况:
1)1次最短路+乱转(源点->最短路上离其他点最近的点->离它最近的点->返回这个点->终点)
2)直接次短路(依次屏蔽每一条边)
可以证明,无向图的次短路仅有这2种情况,如有错误,请读者在评论区指出
2的情况非常好做,仅需依次屏蔽每一条边(最短路上的)后求最短路就好了,1号情况可以邻接表打擂台去取最小值即可
请读者务必好好理解最短路路径记忆的方法,非常非常重要!!!
参考程序如下:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
int n,m,x,y,z,v[200005],w[200005],nxt[200005],head[200005],cnt,dist[200005],pre[200005],edge[200005];
int minn1,lesss,ans,minn2,minn3,ans1=21374404,ans2,ans3,minn4;
int path[100000],num;
bool vis[200005];
void add(int a,int b,int c)
{
v[++cnt]=b;
w[cnt]=c;
nxt[cnt]=head[a];
head[a]=cnt;
}
void spfa(int s)
{
memset(dist,20,sizeof(dist));
queue<int>q;
q.push(s);
dist[s]=0;
vis[s]=1;
while(!q.empty())
{
int c=q.front();
q.pop();
vis[c]=0;
for(int i=head[c];i;i=nxt[i])
{
int y=v[i];
if(dist[y]>dist[c]+w[i])
{
pre[y]=i;edge[y]=c;
dist[y]=dist[c]+w[i];
if(!vis[y])
{
q.push(y);
vis[y]=1;
}
}
}
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>x>>y>>z;
add(x,y,z);
add(y,x,z);
}
spfa(1);
minn3=dist[n]*3;
int s=21370444;
for(int i=head[n];i;i=nxt[i])
{
s=min(s,w[i]*2);
}
minn2=dist[n]*2+s;
s=21370444;
for(int i=head[1];i;i=nxt[i])
{
s=min(s,w[i]*2);
}
minn4=dist[n]*2+s;
minn1=dist[n];
int now=n;
while(now!=1)
{
path[++num]=pre[now];
now=edge[now];
}
for(int i=1;i<=num;i++)
{
int s=w[path[i]];
w[path[i]]=99999999;
spfa(1);
lesss=dist[n];
if(lesss!=minn1)ans1=min(ans1,lesss);
w[path[i]]=s;
}
ans=min(ans1,min(minn2,min(minn3,minn4)));
cout<<ans;
return 0;
}