洛谷P1982 小朋友的数字

题目传送门

 

 

这个题的题目有点长,我们先来分析一波。

首先,这个题目中提到了以下几个量

1.最直接的就是每个小盆友手上的数字,这是题目给你的

2.每个小盆友的特征值

  题目中给的定义是:每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。

  其实就是求一个最大连续子序列和,这个是用DP求的,下面会说到

3.每个小盆友的分数

  分数的定义是这样的:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。

  这个东西显然也是可以DP求的,因为满足最优子结构的性质


 

我们先来处理一下每个小盆友的特征值

其实就是求最大连续子序列和。

我们令dp[i]为以a[i]结尾的最大连续子序列和(注意这里i一定是被选上的)

那么显然只有两种情况

1.这个连续子序列只有一个元素a[i],此时dp[i]=a[i]

2.这个连续子序列有多个元素,那么这个子序列就是从前面某个地方a[p]开始(p<i),一直到a[i]结尾,此时dp[i]=dp[i-1]+a[i]

那么要求最大连续子序列显然就是取一个max

状态转移方程:dp[i]=max(a[i],dp[i-1]+a[i])

该处理特征值了

设t[i]表示第i个小盆友的特征值

然后我们再看题目中给的特征值的定义

特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。

也就是说这个小盆友是不一定被选上的

难道我们每次都要遍历前面来找到一个最大值?

显然不用。我们可以设置一个maxn用来存储这之前的最大值,然后只需要在每一层dp更新一遍就可以了。

最后别忘了取模,否则爆炸就不提了

代码:

    ll maxn=-0x7fffffff;
    for(int i=1;i<=n;i++)
    {
        dp[i]=max(a[i],dp[i-1]+a[i]);
        maxn=max(maxn,dp[i]);
        t[i]=maxn%p;
    }

 


 

 

然后来求一下每个小盆友的分数

我们先定义一个数组f[i]表示第i个小朋友的分数,ans表示答案,maxn表示之前分数的最大值

回头看分数的定义:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。

那么我们可以得到边界条件:f[1]=t[1];ans=f[1]

然后也可以得出状态转移方程   maxn=max(maxn,t[i-1]+f[i-1]),f[i]=maxn

判断答案时记得取模

代码:

maxn=-0x7fffffff;
    f[1]=t[1];
    ans=f[1];
    for(int i=2;i<=n;i++)
    {
        maxn=max(maxn,t[i-1]+f[i-1]);
        f[i]=maxn;
        if(ans<maxn) ans=maxn%p;
    }

 

然后这个题就完了

完整代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
    int ans=0;
    char last=' ',ch=getchar();
    while(ch<'0'||ch>'9') last=ch,ch=getchar();
    while(ch>='0'&&ch<='9') ans=ans*10+ch-'0',ch=getchar();
    if(last=='-') ans=-ans;
    return ans;
}

const ll MANX=1000005;

ll n,p,ans;
ll dp[MANX],a[MANX],t[MANX],f[MANX];

int main()
{
    n=read(),p=read();
    for(int i=1;i<=n;i++) a[i]=read();
    ll maxn=-0x7fffffff;
    for(int i=1;i<=n;i++)
    {
        dp[i]=max(a[i],dp[i-1]+a[i]);
        maxn=max(maxn,dp[i]);
        t[i]=maxn%p;
    }
    maxn=-0x7fffffff;
    f[1]=t[1];
    ans=f[1];
    for(int i=2;i<=n;i++)
    {
        maxn=max(maxn,t[i-1]+f[i-1]);
        f[i]=maxn;
        if(ans<maxn) ans=maxn%p;
    }
    cout<<ans;
}

 

转载于:https://www.cnblogs.com/lcezych/p/11043517.html

洛谷p1427题目是关于小鱼的数字游戏题目描述如下: 小鱼最近被要求参加一个数字游戏,要求它把看到的一串数字按照规定处理。游戏规则是:对于给定的一串数字,小鱼要按照从左到右的顺序进行处理,每处理一个数字后,小鱼的得分就增加这个数字本身,然后把这个数字删除。同时,如果小鱼删除的数字左边有与之相同的数字,则小鱼的得分还要增加这个相同数字本身。小鱼需要你帮助它计算出最终得分。 例如,对于输入的数字序列:321321,小鱼的得分计算过程如下: - 处理第一个数字3,得分为3,删除3后剩下的数字序列为21321。 - 处理第二个数字2,得分为3+2=5,删除2后剩下的数字序列为131。 - 处理第三个数字1,得分为5+1=6,删除1后剩下的数字序列为31。 - 处理第四个数字3,得分为6+3=9,删除3后剩下的数字序列为1。 - 处理第五个数字2,得分为9+2=11,删除2后剩下的数字序列为1。 - 处理最后一个数字1,得分为11+1=12,删除1后剩下的数字序列为空。 所以最终得分为12。 你可以通过编写程序来解决这个问题。具体的实现方式可以根据你使用的编程语言来确定。以下是一个可能的实现方式(使用C++语言): ```cpp #include <iostream> #include <string> using namespace std; int main() { string nums; cin >> nums; int score = 0; for (int i = 0; i < nums.length(); i++) { int num = nums[i] - '0'; score += num; // 删除左边与当前数字相同的数字 for (int j = i - 1; j >= 0; j--) { if (nums[j] == nums[i]) { score += num; nums.erase(j, 1); i--; } else { break; } } } cout << score << endl; return 0; } ``` 以上是一个简单的实现,通过遍历输入的数字序列,计算得分并删除相同的数字。最后输出得分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值