题目描述 Description有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
输入描述 Input Description一个整数v,表示箱子容量
一个整数n,表示有n个物品
接下来n个整数,分别表示这n 个物品的各自体积
输出描述 Output Description一个整数,表示箱子剩余空间。
样例输入 Sample Input24
6
8
3
12
7
9
7
样例输出 Sample Output0
简单的dp问题,可逆向用背包问题的方法求解,即包内装入最多就是剩余空间最小。
附AC代码:
1 #include<iostream> 2 #include<cstring> 3 #include<cmath> 4 using namespace std; 5 6 int w[50]; 7 int dp[21000]; 8 9 int main(){ 10 int m,n; 11 cin>>m>>n; 12 for(int i=1;i<=n;i++){ 13 cin>>w[i]; 14 } 15 memset(dp,0,sizeof(dp)); 16 for(int i=1;i<=n;i++){ 17 for(int j=m;j>=w[i];j--){ 18 dp[j]=max(dp[j],dp[j-w[i]]+w[i]); 19 } 20 } 21 cout<<m-dp[m]<<endl; 22 return 0; 23 }