这题实际解不定方程:ax+by=c
只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小。
首先用扩展欧几里德,很容易得出x和y的解。
一开始不妨令a>b,若a<=b,则交换a和b。
设d=gcd(a,b),最终的
则x=x0+b/d*t,y=y0-a/d*t
z=|x|+|y|=|x0+b/d*t|+|y0-a/d*t|
实际上就是求z=|a1*t+c1|+|c2-a2*t|在t取何值时最小。(a2>a1)
首先由不定方程ax+by=c,a>0,b>0,c>0可知,x和y只有下述三种情况:
x>0,y<0; x<0,y>0; x>0,y>0;
那么对t分类讨论,得出:
1.t<min(-c1/a1,c2/a2),z=-(a1+a2)t+c2-c1,单调减
2.-c1/a1<t<c2/a2,z=(a1-a2)t+c1+c2,单调减
3.t>max(-c1/a1,c2/a2),z=(a1+a2)t+c1-c2,单调增
这样,我们知道当z取最小值时,t=c2/a2=y0/(a/d)=y0*d/a 附近
接着只要在t附近几个比较一下取最小值即可。
#include <iostream> #include <cstdio> #include <string.h> #include <algorithm> using namespace std; int a,b,c; int exgcd(int a,int b,int &x,int &y){ if(b==0){ x=1; y=0; return a; } int d=exgcd(b,a%b,x,y); int tmp=x; x=y; y=tmp-a/b*y; return d; } int main() { int number,mass; while(scanf("%d%d%d",&a,&b,&c)!=EOF){ if(a==0 && b==0 && c==0) break; bool flag=false; if(a<b){ flag=true; int tmp=a; a=b; b=tmp; } int x0,y0,x,y; int d=exgcd(a,b,x,y); int s1=b/d,s2=a/d; x=x*(c/d); y=y*(c/d); int t=y*d/a; number=abs(x)+abs(y); mass=abs(x)*a+abs(y)*b; int xx,yy,ansx=x,ansy=y; for(int i=t-10;i<=t+10;i++){ xx=x+s1*i; yy=y-s2*i; if(abs(xx)+abs(yy)<number){ number=abs(xx)+abs(yy); mass=abs(xx)*a+abs(yy)*b; ansx=xx; ansy=yy; } else if(abs(xx)+abs(yy)==number && abs(xx)*a+abs(yy)*b<mass){ mass=abs(xx)*a+abs(yy)*b; ansx=xx; ansy=yy; } } if(!flag) printf("%d %d\n",abs(ansx),abs(ansy)); else printf("%d %d\n",abs(ansy),abs(ansx)); } return 0; }