[数学]和式基础
我们总是需要把很多数相加在一起求和,以前我们把多个数相加在一起的表现形式为:
\[ \displaystyle a_1+a_2+\cdots+a_n \]
但是这样,我们无法准确的表示这个多项式一共有多少项,所以我们又有另一种多数求和的表示方法,形如下式:
\[ \displaystyle\sum\limits_{i=1}^na_i \]
它等价于\(\displaystyle a_1+a_2+\cdots+a_n\)
\(\displaystyle\sum\)符号
\(\displaystyle\sum\)读作sigma,在数学中是求和符号的意思,使用格式如下:
\[ \displaystyle\sum\limits_{\substack{下界\\附加条件}}^{上界}被加数 \]
其中上界、下界或附加条件不需要时可以忽略。
举一些例子:
\(\displaystyle\sum\limits_{i=1}^na_i\)的意义为从\(1\)到\(n\)之间所有整数的和,等价于\(a_1+a_2+\cdots+a_n\)
\(\displaystyle\sum\limits_{\substack{i=1\\i是素数}}^ni\)的意义为从\(1\)到\(n\)之间所有的素数的和。
\(\displaystyle\sum\limits_{L\subset K}1\)的意义是\(K\)的所有子集的个数,注意这里省略的是下界和上界,保留的是附加条件。
运算定理
交换律:
计算和式的过程中的顺序不一样,不影响和式的值,形如:
\[ \displaystyle\sum\limits_{k\in S}a_k=\sum\limits_{p(k)\in S}a_{p(k)} \]
这里的\(p(k)\)是S的任意排列,且我们在这里并不讨论无限和式的情况。
结合律:
两个上界、下界与附加条件都相等的两个和式可以合并,被加数相加,形如:
\[ \displaystyle\sum\limits_{k=s}^ta_k+\sum\limits_{k=s}^tb_k=\sum\limits_{k=s}^t\left(a_k+b_k\right) \]
分配律:
将被加数中与和式的变量无关的因式提出来不影响结果,形如:
\[ \displaystyle\sum\limits_{k=s}^tC\cdot a_k=C\cdot\sum\limits_{k=s}^ta_k \]
小结
有关和式的最最基础的知识点就这些了,非常少,但是很常用,需要好好掌握。