和式

一、记号

  • 用求和记号可以很好地将很长的式子变为一个较短的式子。
    a 1 + a 2 + a 3 + ⋯ + a n − 1 + a n = ∑ i = 1 n a i a_1+a_2+a_3+\dots+a_{n-1}+a_n=\sum_{i=1}^n a_i a1+a2+a3++an1+an=i=1nai

  • ∑ \sum 下面是下界,上面是求和的上界。上面的式子也可以这样写:
    a 1 + a 2 + a 3 + ⋯ + a n − 1 + a n = ∑ 1 ≤ i ≤ n a i a_1+a_2+a_3+\dots+a_{n-1}+a_n=\sum_{1 \le i \le n} a_i a1+a2+a3++an1+an=1inai

  • 这样的式子迭代性很强,可以多重求和: ∑ i ( ∑ j a i + b j ) \displaystyle\sum_i\Big(\sum_ja_i+b_j\Big) i(jai+bj)

  • 假设要算100内奇数平方的和,可以这样写: ∑ k = 1 100 k 2   [ k 为 奇 数 ] \displaystyle\sum_{k=1}^{100}k^2\ [k为奇数] k=1100k2 [k] (隐式表达)
    也可以这样: ∑ k = 0 49 ( 2 k + 1 ) 2 \displaystyle\sum_{k=0}^{49}(2k+1)^2 k=049(2k+1)2 (显示表达)

  • [ P ( i ) ] [P(i)] [P(i)],表示一个判断条件。
    [ P ( i ) ] = { 1 P ( i ) 成 立 0 P ( i ) 不 成 立 [P(i)]=\begin{cases} 1 &P(i)成立 \\ 0 &P(i)不成立 \end{cases} [P(i)]={10P(i)P(i)

    例如 ∑ d [ n ∣ d ] \sum_d [n|d] d[nd] 表示 n n n的因数个数。

    也就是说和式的条件也可以写在里面:
    a 1 + a 2 + a 3 + ⋯ + a n − 1 + a n = ∑ i a i [ 1 ≤ i ≤ n ] a_1+a_2+a_3+\dots+a_{n-1}+a_n=\sum_i a_i[1 \le i \le n] a1+a2+a3++an1+an=iai[1in]

二、和式的计算

  • 分配律: ∑ i a i × b = b × ∑ i a i \displaystyle\sum_i a_i\times b=b\times\sum_i a_i iai×b=b×iai
  • 结合律: ∑ i = 1 n a i + ∑ i = 1 n b i = ∑ i = 1 n a i + b i \displaystyle\sum_{i=1}^n a_i+\sum_{i=1}^n b_i=\sum_{i=1}^n a_i+b_i i=1nai+i=1nbi=i=1nai+bi
  • 广义分配律: ∑ i ( ∑ j f ( i ) g ( j ) [ P ( i ) ] [ Q ( j ) ] ) = ( ∑ i f ( i ) [ P ( i ) ] ) ( ∑ j g ( j ) [ Q ( j ) ] ) \displaystyle\sum_i\Big(\sum_jf(i)g(j)[P(i)][Q(j)]\Big)=\Big(\sum_i f(i)[P(i)]\Big)\Big(\sum_j g(j)[Q(j)]\Big) i(jf(i)g(j)[P(i)][Q(j)])=(if(i)[P(i)])(jg(j)[Q(j)])
  • 交换求和顺序: ∑ i ( ∑ j a i , j [ P ( i , j ) ] ) = ∑ j ( ∑ i a i , j [ P ( i , j ) ] ) \displaystyle\sum_i\Big(\sum_ja_{i,j}[P(i,j)]\Big)=\sum_j\Big(\sum_ia_{i,j}[P(i,j)]\Big) i(jai,j[P(i,j)])=j(iai,j[P(i,j)])

三、应用

∑ 1 ≤ j &lt; k ≤ n 1 k − j \displaystyle\sum_{1\le j&lt;k\le n}{1\over k-j} 1j<knkj1 的值?

解 : 原 式 = ∑ j = 1 n − 1 ( ∑ k = j + 1 n 1 k − j ) = ∑ j = 1 n − 1 ( ∑ k − j = 1 n − j 1 k − j ) = ∑ j = 1 n − 1 ( ∑ k = 1 n − j 1 k ) = ∑ k = 1 n ( ∑ j = 1 n − k 1 k ) = ∑ k = 1 n ( 1 k ∑ j = 1 n − k 1 ) = ∑ k = 1 n 1 k ( n − k ) = n ∑ k = 1 n 1 k − 1 \begin{aligned} 解:原式&amp;=\sum_{j=1}^{n-1}\Big(\sum_{k=j+1}^n{1\over k-j}\Big) \\ &amp;=\sum_{j=1}^{n-1}\Big(\sum_{k-j=1}^{n-j}{1\over k-j}\Big) \\ &amp;=\sum_{j=1}^{n-1}\Big(\sum_{k=1}^{n-j}{1\over k}\Big) \\ &amp;=\sum_{k=1}^{n}\Big(\sum_{j=1}^{n-k}{1\over k}\Big) \\ &amp;=\sum_{k=1}^{n}\Big({1\over k}\sum_{j=1}^{n-k}1\Big) \\ &amp;=\sum_{k=1}^{n}{1\over k}(n-k) \\ &amp;=n\sum_{k=1}^{n}{1\over k}-1 \\ \end{aligned} =j=1n1(k=j+1nkj1)=j=1n1(kj=1njkj1)=j=1n1(k=1njk1)=k=1n(j=1nkk1)=k=1n(k1j=1nk1)=k=1nk1(nk)=nk=1nk11
简单的运算把两重循环变为了一重循环,很好的降低了时间复杂度。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值