人工智能实战2019第六次作业 焦宇恒

标题内容
这个作业属于哪个课程人工智能实战2019
这个作业的要求在哪里练习调整超参
这个作业在哪个具体方面帮助我实现目标体验超参对学习结果的影响

实验结果

  • 本次实验,假设各个变量相互独立使用控制变量的方法进行测试(实际情况看来假设不成立= =)。由于实验结果具有不可重复性,所以对每组参数都进行了两次测试

学习率的影响

testlearning_raten_hidden1n_hidden2epochbatch_sizeaccuracy
10.0532162100.9521
32162100.9487
20.132162100.9548
32162100.9469
30.232162100.9532
32162100.9537
40.532162100.9532
32162100.9563
  • 结论:有以上几组测试看来学习率并无明显变化,并且过低的学习率会使训练时间明显变长并且得到的结果可能是局部最优。

epoch的影响

testlearning_raten_hidden1n_hidden2epochbatch_sizeaccuracy
10.232162100.9532
32162100.9537
20.232165100.96
32165100.9621
30.2321610100.96
321610100.9628
40.2321615100.9668
321615100.966
  • 结论:随着epoch次数的提高准确率变高了!但是训练时间也随之等比例增加

batch_size的影响

testlearning_raten_hidden1n_hidden2epochbatch_sizeaccuracy
10.23216220.9204
3216220.9243
20.23216250.9496
3216250.9435
30.232162100.9565
32162100.9513
40.232162150.9529
32162150.9575
  • 结论:batch_size过大或者过小都不是理想的选择,10正合适

隐层神经元个数的影响

testlearning_raten_hidden1n_hidden2epochbatch_sizeaccuracy
10.232162100.9486
32162100.9559
20.264322100.963
64322100.966
30.2128162100.9611
128162100.9684
40.2128642100.9622
128642100.9607
50.2100202100.9652
100202100.9646
  • 结论:这个参量就比较玄学了,几组结果相差不过,不过神经元个数越多,训练速度也越慢。看起来100-20是个不错的选择

根据测试结果猜测的最优组合

  • learning_rate = 0.2
  • epoch = 20
  • batch_size =10
  • n_hidden1 = 100
  • n_hidden2 = 20
  • accuracy = 0.9812
    1613934-20190422163558165-843695110.png

转载于:https://www.cnblogs.com/JiaoYh98/p/10750984.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值