事务隔离性

本文深入解析数据库事务的四种隔离级别:脏读、已提交读、可重复读和串行化。通过具体的情景展示,解释每种隔离级别下数据读取的特性及差异,帮助读者理解如何在不同场景下选择合适的事务隔离级别。

1. 脏读:未提交  读  read uncommit 事务A读取事务B未提交的数据

事务A 读取事务B更新的数据, 然后事务B回滚,那么A读取到的数据就是脏数据:

情景展示:

1. 会话B 可提交读

set SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

BEGIN
update account set balance = balance - 50 where id = 1

2. 会话A 读取表数据

set SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

select * from account

  

3. 此时会话A看到 id = 1的 balance = 350, 想要执行更新操作,350 - 50 =300

update account set balance = balance - 50 where id = 1

4. 在执行之前, 会话B 执行rollback 回滚了
5.然后结果并没有改变

 

2.已提交读:read COMMITTED:事务A 会读取到事务B已提交的数据

1. 新建一个会话,会话设置为 read committed 已提交读,然后开启一个事务

set SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED

BEGIN

执行更新语句:
update account set balance = balance - 50 where id = 1

2.新建一个会话,设置为已提交读,然后开启事务,查询表数据

set SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED

BEGIN

select * from account


读取到的数据仍然是400

 

3. 可重复读 REPEATABLE READ
可重复读和读已提交的效果很相似,
二者的区别是什么:当会话提交后, 在另一个会话中,查询的数据不变

原始数据

 

1.开启一个会话, 设置会话级别,可重复读,然后开启事务,更新操作

set SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN

update account set balance = balance - 50 where id = 1

2.开启另一个会话,设置会话级别,可重复读,然后开启事务,执行查询操作

set SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ

 

BEGIN

 

select * from account

3.会话1 提交事务 commit, 然后会话1查询数据展示:

4.会话2 查询数据展示:

 

转载于:https://www.cnblogs.com/Uzai/p/11222821.html

房屋与网球场目标检测数据集 一、基础信息 • 数据集名称:房屋与网球场目标检测数据集 • 图片数量: 训练集:273张图片 验证集:75张图片 测试集:92张图片 总计:440张图片 • 训练集:273张图片 • 验证集:75张图片 • 测试集:92张图片 • 总计:440张图片 • 分类类别: House(房屋):常见的住宅建筑类型。 TennisCourt(网球场):用于网球运动的专用场地。 • House(房屋):常见的住宅建筑类型。 • TennisCourt(网球场):用于网球运动的专用场地。 • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据来源:来源于航拍或相关图像数据集。 二、适用场景 • 城市规划与土地管理:自动检测房屋和网球场,辅助城市发展分析和土地利用规划。 • 房地产评估与开发:用于识别住宅建筑和体育设施,支持房产估值和项目规划。 • 体育设施监控:监控网球场的分布和状态,优化体育资源管理和维护。 • 航拍图像分析:适用于无人机或卫星图像中的目标检测,提升地理信息系统(GIS)和遥感应用效率。 三、数据集优势 • 标注精准可靠:采用YOLO格式标注,边界框定位准确,确保模型训练的有效。 • 类别聚焦实用:专注于房屋和网球场两个常见类别,覆盖住宅和娱乐设施,具有实际应用价值。 • 数据划分合理:提供训练集、验证集和测试集,数据量分配科学,支持模型开发与评估。 • 兼容强:标注格式兼容主流深度学习框架,如YOLO、PyTorch等,便于直接使用和集成。 • 任务适配高:专为目标检测任务设计,帮助构建高效、准确的AI模型,适用于多种现实场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值