python多进程map比apply快_python:map,apply,mapapply区别

本文介绍了 Python 中 `apply`、`map` 和 `applymap` 在数据处理中的应用。`apply` 适用于 Series 和 DataFrame,可对整个列进行操作,如提取首字母;而 `map` 仅能作用于 Series,常用于替换值;`applymap` 则可对 DataFrame 中所有元素进行操作。文中通过实例展示了它们的使用方法及性能差异。
摘要由CSDN通过智能技术生成

apply:可作用与Series,也可以作用DataFrame

作用于Series

*data

CabinFareAge

0Acd7.829234.5

1Vafe7.000047.0

2Cfwrw9.687562.0

3Rfdf8.662527.0

4Mfdf12.287522.0

*data['cabin']=data['Cabin'].apply(lambda x:x[0])

*data['cabin']

0 A

1 V

2 C

3 R

4 M

作用与DataFrame

*data[['Fare','Age']].apply(lambda x:x.max()-x.min())

Fare 5.2875

Age 40.0000

map只可作用于Series

*data['cabin1'] = data['Cabin'].map(lambda x:x[0])

*data['cabin1']

0 A

1 V

2 C

3 R

4 M

*data[['Fare','Age']].map(lambda x:x.max()-x.min())

AttributeError: 'DataFrame' object has no attribute 'map'

#还可以用作替换

*x = pd.Series([0,1,2], index=['one', 'two', 'three'])

*y = pd.Series(['foo', 'bar', 'baz'], index=[0,1,2])

*x.map(y) #x的值与y的index 值相同,可将替换,不同,以NaN填充

one foo

two bar

three baz

dtype: object

#作用于合并

*x.map('you have {} pen'.format,na_action=None) #na_action 对NaN填充,'ignore'忽视NaN不填充

one you have 0 pen

two you have 1 pen

three you have 2 pen

applymap 部分行、列,对所有元素进行操作。

操作对象可以是DataFrame 或者 Series

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值