- 博客(458)
- 资源 (5)
- 收藏
- 关注

原创 图像分类---汇总贴
需要的知识点:误分类分析代码篇:分类可视化篇:自我搭建小的网络识别类似于小图片(或者串联级任务小模型,例如:微笑识别模型)经验汇总帖案例汇总贴
2020-10-13 15:08:00
179
原创 高斯滤波 中值滤波 均值滤波的区别
图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(Salt & Pepper)噪声、脉冲噪声、高斯噪声等.椒盐噪声含有随机出现的黑白强度值.而脉冲噪声则只含有随机的白强度值(正脉冲噪声)或黑强度值(负脉冲噪声).与前两者不同,高斯噪声含有强度服从高斯或。椒盐噪声是指在图像传输系统中由于解码误差等原因,导致图像中出现孤立的白点或者黑点。的噪声.研究滤波就是为了消除噪声干扰。适用于去除通过扫描得到的图像中的。(服从正态分布的噪声),起到。1 图像滤波的基本概念。各种噪声图像的特征 见。
2022-12-02 13:23:14
286
原创 halcon--- 图像变量---图像 image,区域 region,轮廓 XLD
图像 image不必多说,最终处理,显示都是基于 image 这种类型。区域 Region最终要通过 reduce_domain 的方式 去得到 image 图像,去处理。Region可以理解为符合某些性质像素的子集。 Region的形状可以是任意的,单独的一个点都可成为是一个Region。 Region实例(region.hdev)常见得到Region的算子threshold()gen_circle (Circle, 200, 200, 100.5) (ge...
2022-03-23 08:53:07
830
原创 halcon---ROI的一些用法
参考我这篇做的笔记鸟叔机器视觉halcon05_Hdevelop图像与ROI_哔哩哔哩_bilibiliregion 和 XLD ,中文即 区域和轮廓。ROI 的 生成的 两种主要方式。ROI 之间 可以做哪些 运算。ROI 配合其他算子 强大的用法。几个halcon不错的网站:http://www.51halcon.com...
2022-03-22 08:13:20
754
原创 人群计数 MCNN 解析 PGCNet
人群计数研究的发展传统的:直接回归计数法--- input(图片)——>outout(人数) 参考目前深度学习主流的: input(图片)——>output(密度图)——>估计人数为什么不基于深度学习的目标检测、原因是目标检测对于密集对象与超小目标对象很难正确识别与准确计数。无法正确给出密集人群的模型与聚集程度。进展 | 密集人群分布检测与计数_Dataset首先对于这个新的细分领域的深度学习可以从这篇文章入门开始:人群计数:从MCNN开始谈起~ - 知乎.
2022-03-13 17:06:40
1726
原创 模型训练时,提高数据加载的一些技巧
预处理提速尽量减少每次读取数据时的预处理操作,可以考虑把一些固定的操作,例如 resize ,事先处理好保存下来,训练的时候直接拿来用 Linux上将预处理搬到GPU上加速: NVIDIA/DALI :https://github.com/NVIDIA/DALI 作者:人民艺术家链接:https://www.zhihu.com/question/307282137/answer/907835663来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。IO提速.
2022-03-12 16:16:11
1944
原创 SSD网络
two-stage:以R-CNN系列为代表,这类方法通常包括两个部分,第一部分先使用selective search、卷积神经网络等筛选出一些proposal boxes,然后第二部分再对这些proposal boxes进行分类和回归。这就相当于进行了两次分类和回归,因此检测的准确率较高,但是可想而知检测的速度也就比较慢了。 one-stage:以YOLO为代表,这类方法的主要思路就是在图片的不同位置进行密集采样,然后使用CNN网络提取特征并直接进行分类和回归,整个过程只要一步就可完成。这种方法的优势是检
2022-03-06 14:36:11
5460
原创 YOLO承上启下---YOLOV2的精进
YOLO v2 也即 YOLO 9000YOLO v2改进的地方0. 主干网络从GoogleNet 换成性能更好的Darknet19.提取特征更细粒度。1. YOLO v2受到faster rcnn的启发,引入了anchor。(anchor是通过在训练集上K-Means方法得到的)2. 引入BN层,训练更快,更稳定,取代dropout防止过拟合,同时提升了mAP值。参考13. 预训练模型先在224×224数据集上训练,最后在448×448数据集上训练10轮,使模型适应检测的448×448
2022-03-06 07:52:13
2666
原创 GIT 命令集锦
$ git logls -a$ git clone https://github.com/PaddlePaddle/Paddle.git$ git config --list$ git clone http://172.26.37.17/XXXX-IMD-AI/BatSlitSystem.git$ git checkout -b Rebuiding$ git checkout -b Rebuilding$ git checkout -b Rebuilding$ git pull$ git.
2022-03-03 07:41:05
431
原创 #ifndef 和 #pragma once:防止头文件的重复定义
可以把include 理解为 "把目标文件内容复制到这个位置".你觉得include多次会发生什么?include多次不影响是因为头文件中加了一组宏, 最好能自己理解一下这组宏的意思.另外不推荐使用#pragma once, 因为这个好像只在VS中起作用. 重复包含的影响:在预处理对时候,include相同的文件,预处理器会检查XXX是否有定义再决定要不要复制内容,重复包含会是编译器多检查几次而已。另外在使用增量编译的时候,这个文件变化,所有 include 这个文件的文件都需要重新编译,即使没有
2022-02-26 09:29:06
408
原创 GIOU loss
IOUIOU在0~1之间,两个框完全重合为1,所以 为0时没有重合,即值越低 IOU效果越差IOU loss = 1 - IOU,loss 越小,效果越好,这是 IOU loss 和 IOU 的区别GIoU目标检测中的IOU&升级版GIOU - 知乎IoU的局限性预测框和真实框之间没有重合时,IoU 值为 0, 导致优化损失函数时梯度也为 0,意味着无法优化。当IOU=0时:https://www.zhihu.com/equation?tex=GIOU%3D-1%2
2022-02-23 00:16:47
2483
原创 Qt中的动态链接库编程(共享库(Shared Libraries))
__stdcall、Q_DECL_IMPORT、Q_DECL_EXPORT - 狂奔~ - 博客园Qt中的动态链接库编程(Q_DECL_IMPORT、Q_DECL_EXPORT)_FDMin的博客-CSDN博客_q_decl_exportQt的跨平台特性很好,对于本文的主题——动态链接库的支持也很好。QT对各种平台的动态链接库编程技术都有包装,QT把这种技术统一命名为共享库(Shared Libraries)。通过使用Qt包装过的类和宏,可以编写跨平台的共享库和插件——当然,这只是源代码级别的跨
2022-02-18 08:52:44
850
原创 QT疑难点
1. this->state_label.setText(tr("未登录"));timer = new QTimer(this);timer->start(15 * 1000 * 60);->的作用;2. 信号和曹 再温习一遍3.// 定时器设定 timer = new QTimer(this);定时器 是不是 一个后台线程,不阻塞QTUI界面线程3.当前不会命中断点,还没有为该文档加载任何符号VS关于Visual Studio "当前不会...
2022-01-09 19:04:59
255
原创 Python之logging.handlers.TimedRotatingFileHandler
..import osimport loggingimport sysfrom logging.handlers import TimedRotatingFileHandlerimport time LOG_PATH = "logs" def get_logger(name): logger = logging.getLogger(name) if os.path.exists(LOG_PATH): pass else:
2021-10-11 22:40:58
2531
5
原创 如何离线安装pip包(以paddleX为例)
生成离线安装包 安装包有各种依赖,因此生成包可能是生成相关的依赖包和主体的综合体。python项目中必须包含一个 requirements.txt 文件,用于记录所有依赖包及其精确的版本号。以便重新环境部署。使用pip生成:pip freeze >requirements.txt会生成一个requirements.txt文件,安装或升级包后,要更新这个文件。如果要创建这个环境的副本,使用pip:pip install -r requirements.txt ...
2021-09-16 09:21:30
2078
原创 图像分类模型总结
【结构变迁】LeNet:第一个成功的卷积神经网络。 AlexNet:类似LeNet,层次更深更大。使用了层叠的卷积来抓取特征(通常是一个卷积层马上一个maxpooling层)。 ZF Net:增加了中间卷积层的尺寸,让第一层stride和filter size更小。 VGG:只使用filter size = 3和pooling size = 2 从头到尾堆叠。 GoogLeNet:较少参数量,最后一层用平均池化代替全连接层,top-1成功率提高了0.6%。 ResNet:引入了跨层连接和bat
2021-07-21 06:48:18
1421
原创 关于FastRCNN ROI pooling的理解
见这篇,讲的很详细:https://www.cnblogs.com/Ann21/p/9824466.html
2021-07-18 05:58:42
182
原创 pytorch 学习记录
https://www.bilibili.com/video/BV1hE411t7RN?p=56:43 print("start"),在输入 引号里的start后,按 shift + enter ,可以直接跳到下一行。
2021-07-12 21:24:11
76
原创 TensorRT (一) Win10 安装配置
https://blog.csdn.net/qq_19707521/article/details/104986296
2021-06-07 16:02:05
348
原创 深度学习: 学习率热身 (warm up)
深度学习训练策略-学习率预热 Warm upWarm up 主要解决如下几个问题:训练是否成功的问题,参考这篇(1)训练出现NaN:当网络非常容易nan时候,采用warm up进行训练,可使得网络正常训练;(2)过拟合:训练集损失很低,准确率高,但测试集损失大,准确率低,可用warm up;具体可看:Resnet-18-训练实验-warm up操作其他几篇可以参考的文章:https://blog.csdn.net/weixin_40051325/article/deta...
2021-05-30 08:56:06
793
原创 关于特征金字塔结构 FPN,终于听明白了它的原理
https://abcxueyuan.baidu.com/#/play_video?id=15331&courseId=15331&mediaId=mda-kmvq92ymhnszuqpv&videoId=4478§ionId=15580&type=%E5%85%8D%E8%B4%B9%E8%AF%BE%E7%A8%8B&showCoursePurchaseStatus=false31:00浅层网络(下层网络) 感受野小,但是只能感受到纹理等细
2021-05-28 05:03:26
930
原创 关于过拟合的一切问题,都在这里了
什么是过拟合?过拟合也就是你的模型泛化能力差,在训练集上效果很好,但是在验证集和测试集或者实际场合里效果差的表现。怎么判断是不是过拟合?训练时准确率高,验证时准确率低。过拟合产生的原因:1.神经网络的学习能力过强,复杂度过高2.训练时间太久3.激活函数不合适4.数据量太少5.数据集样本不够丰富,或者存在标签失真,不合理,或者样本存在脏数据解决办法:1.降低模型复杂度,dropout2.即时停止3.正则化4.数据增强偏差和方差Error = Bias .
2021-05-22 10:49:02
299
原创 halcon三种模板匹配方法
Component-Based、GrayValue-Based、Shape-Based,即:基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配组件匹配(或成分、元素匹配),灰度值匹配形状的匹配HALCON形状匹配讲解...
2021-05-04 09:29:54
902
原创 重读残差网络——resnet(对百度vd模型解读)
resnet 解决了随着CNN网络深度的加深,网络性能退化的一个问题。具体解释见 (11:20):飞桨开发者live:手把手教你玩转工业质检_哔哩哔哩_bilibili一分钟带你认识残差模块对百度vd模型解读(14:40):飞桨开发者live:手把手教你玩转工业质检_哔哩哔哩_bilibili很好的解释:深度学习经典网络(4)ResNet深度残差网络结构详解_青衫憶笙-CSDN博客_resnet网络结构论文翻译中文版2. 怎么解决退化问题?...
2021-05-02 00:03:04
936
1
原创 LabVIEW通用视觉软件详细讲解
http://t.elecfans.com/live/1200.html?room=1https://www.bilibili.com/video/BV1t54y1Q7j9?from=search&seid=490379613399140298
2021-04-30 08:17:00
632
原创 一些优秀博客主的文章汇总
计算机视觉机器视觉给订阅读者的一封信谷棵的专栏图像分类目标检测图像分割机器学习送给订阅我专栏同学们一封信杨鑫newlife的专栏神经网络编程语言C#https://blog.csdn.net/gukewee/category_6876455.htmlpythonC++...
2021-04-29 08:34:06
237
原创 反向传播之梯度更新
关于梯度的概念梯度是微积分中一个很重要的概念,之前提到过梯度的意义在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向。这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的方
2021-04-27 10:59:34
1008
原创 对于mobilenet v1的深度可分离卷积 全网讲解最清晰
一些轻量级的网络,如mobilenet中,会有深度可分离卷积depthwise separable convolution,由depthwise(DW)和pointwise(PW)两个部分结合起来,用来提取特征feature map相比常规的卷积操作,其参数数量和运算成本比较低常规卷积操作对于一张5×5像素、三通道(shape为5×5×3),经过3×3卷积核的卷积层(假设输出通道数为4,则卷积核shape为3×3×3×4,最终输出4个Feature Map,如果有same padding则尺寸与
2021-04-20 09:47:52
440
原创 目标检测 Backbone、Neck、Detection head
backbone:提取基础特征网络head:分类+定位neck:提出一个好的结构或模块,更好适应feature补充backbone:尽管现在学术界已经知道了不用那些在ImageNet上预训练的模型作为backbone,而是自己搭建backbone网络或者使用分类网络,但不会加载预训练模型,也能够达到同样的效果,但是这样的代价就是需要花更多的实践来训练,如何对数据进行预处理也是要注意的,换句话说,给调参带来了更多的压力。关于这一点,感兴趣的读者可以阅读Kaming He的《Rethinking
2021-04-19 11:18:46
515
原创 L1和L2正则化和L1和L2损失
L1和L2正则化L1和L2正则化(岭回归和LASSO)_海军上将光之翼的博客-CSDN博客_l1正则化回归L1和L2损失L1和L2损失函数(L1 and L2 loss function)及python实现_海军上将光之翼的博客-CSDN博客_l2损失L1与L2损失函数和正则化的区别 - 山阴少年 - 博客园图像卷积神经网络损失函数正则化一般 L2正则化用的多,参考...
2021-04-17 22:55:45
115
软件试用次数c# demo
2018-07-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人