月之数
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6996 Accepted Submission(s): 4138
Problem Description
当寒月还在读大一的时候,他在一本武林秘籍中(据后来考证,估计是计算机基础,狂汗-ing),发现了神奇的二进制数。
如果一个正整数m表示成二进制,它的位数为n(不包含前导0),寒月称它为一个n二进制数。所有的n二进制数中,1的总个数被称为n对应的月之数。
例如,3二进制数总共有4个,分别是4(100)、5(101)、6(110)、7(111),他们中1的个数一共是1+2+2+3=8,所以3对应的月之数就是8。
如果一个正整数m表示成二进制,它的位数为n(不包含前导0),寒月称它为一个n二进制数。所有的n二进制数中,1的总个数被称为n对应的月之数。
例如,3二进制数总共有4个,分别是4(100)、5(101)、6(110)、7(111),他们中1的个数一共是1+2+2+3=8,所以3对应的月之数就是8。
Input
给你一个整数T,表示输入数据的组数,接下来有T行,每行包含一个正整数 n(1<=n<=20)。
Output
对于每个n ,在一行内输出n对应的月之数。
Sample Input
3 1 2 3
Sample Output
1 3 8
本人首先用位运算做了一下这个题: 看起来貌似有点麻烦:
#include "stdio.h"
int getMax(int n)
{
int i=0,sum=0,t=1;
for (i = 0; i < n; ++i)
{
if(i==0) t=1;
else t*=2;
sum+=t;
}
return sum;
}
int getMin(int n)
{
int i,t=1;
for (i = 1; i < n; ++i)
t*=2;
return t;
}
int main()
{
int n,m,max,min,t,num,sum;
while(scanf("%d",&n)!=-1)
{
while(n--)
{
scanf("%d",&m);
max=getMax(m);
min=getMin(m);
sum=0;
while(min<=max)
{
t=min;
num=m;
while(num--)
{
sum+=t&0x0001;
t=t>>1;
}
min++;
}
printf("%d\n",sum);
}
}
return 0;
}
然后是这种位运算的升级版本:
#include "stdio.h"
int main()
{
int T,i;
scanf( "%d", &T );
while( T-- )
{
int N, beg = 1, end = 1, ans = 0;
scanf( "%d", &N );
for(i = 1; i < N; ++i )
{ beg <<= 1; end <<= 1;}
end <<= 1, end -= 1;
for(i = beg; i <= end; ++i )
{
int t = i;
while( t > 0 )
{
if( t & 1 )
++ans;
t >>= 1;
}
}
printf( "%d\n", ans );
}
return 0;
}
还有另一种算法:按照概率算:
一个n为二进制,一共有2^(n-1)个数字
首位一定是1,其他位要么是1,要么是0,而且0和1出现的次数是相同的,那么我们可以认为其他位出现的都是1/2
那么你要求的和就是 sum=2^(n-1)*(1+(n-1)/2);
化简得 sum=2^(n-2)*(n+1);
上代码,太简洁了
#include <stdio.h>
#include <math.h>
int main()
{
double a,b,n;
int T;
scanf("%d",&T);
while(T--)
{
scanf("%lf",&n);
b=pow(2.0,n-2)*(n+1);
printf("%.0lf\n",b);
}
return 0;
}
还有一种,我也没看懂: (郁闷)
#include "stdio.h"
int main()
{
int ans[22],base = 1,T,i;
ans[1] = 1;
for(i = 2; i <= 20; ++i )
{
ans[i] = 2 * ans[i-1] + base;
base <<= 1;
printf("%d %d\n",ans[i],base);
}
scanf( "%d", &T );
while( T-- )
{
int N;
scanf( "%d", &N );
printf( "%d\n", ans[N] );
}
return 0;
}