RNN,LSTM,GRU基本原理的个人理解

记录一下对RNN,LSTM,GRU基本原理(正向过程以及简单的反向过程)的个人理解

RNN

Recurrent Neural Networks,循环神经网络
(注意区别于recursive neural network,递归神经网络)

为了解决DNN存在着无法对时间序列上的变化进行建模的问题(如自然语言处理、语音识别、手写体识别),出现的另一种神经网络结构——循环神经网络RNN。

RNN结构

 

第tt层神经元的输入,除了其自身的输入xtxt,还包括上一层神经元的隐含层输出st−1st−1
每一层的参数U,W,V都是共享的


每一层并不一定都得有输入和输出,如对句子进行情感分析是多到一,文本翻译多到多,图片描述一到多
数学描述

(以下开始符号统一)
回忆一下单隐含层的前馈神经网络
输入为X∈Rn×xX∈Rn×x(n个维度为x的向量)
隐含层输出为
H=ϕ(XWxh+bh)
H=ϕ(XWxh+bh)

输出层输入H∈Rn×hH∈Rn×h
输出为
Y^=softmax(HWhy+by)
Y^=softmax(HWhy+by)

现在对XX、HH、YY都加上时序下标
同时引入一个新权重Whh∈Rh×hWhh∈Rh×h
得到RNN表达式
Ht=ϕ(XtWxh+Ht−1Whh+bh)
Ht=ϕ(XtWxh+Ht−1Whh+bh)
Y^t=softmax(HtWhy+by)
Y^t=softmax(HtWhy+by)

H0H0通常置零
深层RNN和双向RNN

 


通过时间反向传播和随之带来的问题

输入为xt∈Rxxt∈Rx
不考虑偏置
隐含层变量为
ht=ϕ(Whxxt+Whhht−1)
ht=ϕ(Whxxt+Whhht−1)

输出层变量为
ot=Wyhht
ot=Wyhht

则损失函数为
L=1T∑t=1Tℓ(ot,yt)
L=1T∑t=1Tℓ(ot,yt)
以一个三层为例

三个参数更新公式为
Whx=Whx−η∂L∂Whx
Whx=Whx−η∂L∂Whx
Whh=Whh−η∂L∂Whh
Whh=Whh−η∂L∂Whh
Wyh=Wyh−η∂L∂Wyh
Wyh=Wyh−η∂L∂Wyh

明显的
∂L∂ot=∂ℓ(ot,yt)T⋅∂ot
∂L∂ot=∂ℓ(ot,yt)T⋅∂ot

根据链式法则
∂L∂Wyh=∑t=1Tprod(∂L∂ot,∂ot∂Wyh)=∑t=1T∂L∂oth⊤t
∂L∂Wyh=∑t=1Tprod(∂L∂ot,∂ot∂Wyh)=∑t=1T∂L∂otht⊤

先计算目标函数有关最终时刻隐含层变量的梯度
∂L∂hT=prod(∂L∂oT,∂oT∂hT)=W⊤yh∂L∂oT
∂L∂hT=prod(∂L∂oT,∂oT∂hT)=Wyh⊤∂L∂oT

假设ϕ(x)=xϕ(x)=x(RNN中用激活函数relu还是tanh众说纷纭,有点玄学)
∂L∂ht=prod(∂L∂ht+1,∂ht+1∂ht)+prod(∂L∂ot,∂ot∂ht)=W⊤hh∂L∂ht+1+W⊤yh∂L∂ot
∂L∂ht=prod(∂L∂ht+1,∂ht+1∂ht)+prod(∂L∂ot,∂ot∂ht)=Whh⊤∂L∂ht+1+Wyh⊤∂L∂ot

通项为
∂L∂ht=∑i=tT(W⊤hh)T−iW⊤yh∂L∂oT+t−i
∂L∂ht=∑i=tT(Whh⊤)T−iWyh⊤∂L∂oT+t−i
注意上式,当每个时序训练数据样本的时序长度T较大或者时刻t较小,目标函数有关隐含层变量梯度较容易出现衰减和爆炸

∂L∂Whx=∑t=1Tprod(∂L∂ht,∂ht∂Whx)=∑t=1T∂L∂htx⊤t
∂L∂Whx=∑t=1Tprod(∂L∂ht,∂ht∂Whx)=∑t=1T∂L∂htxt⊤
∂L∂Whh=∑t=1Tprod(∂L∂ht,∂ht∂Whh)=∑t=1T∂L∂hth⊤t−1
∂L∂Whh=∑t=1Tprod(∂L∂ht,∂ht∂Whh)=∑t=1T∂L∂htht−1⊤
梯度裁剪

为了应对梯度爆炸,一个常用的做法是如果梯度特别大,那么就投影到一个比较小的尺度上。θθ为设定的裁剪“阈值”,为标量,若梯度的范数大于此阈值,将梯度缩小,若梯度的范数小于此阈值,梯度不变
g=min(θ∥g∥,1)g
g=min(θ‖g‖,1)g
LSTM

RNN的隐含层变量梯度可能会出现衰减或爆炸。虽然梯度裁剪可以应对梯度爆炸,但无法解决梯度衰减。因此,给定一个时间序列,例如文本序列,循环神经网络在实际中其实较难捕捉两个时刻距离较大的文本元素(字或词)之间的依赖关系。
LSTM(long short-term memory)由Hochreiter和Schmidhuber在1997年被提出。

LSTM结构

这里两张图先不用细看,先着重记住公式后再回来看

 


数学描述

(同上,符号统一)
设隐含状态长度hh,tt时刻输入Xt∈Rn×xXt∈Rn×x(xx维)及t−1t−1时刻隐含状态Ht−1∈Rn×hHt−1∈Rn×h,
输入门,遗忘门,输出门,候选细胞如下

It=σ(XtWxi+Ht−1Whi+bi)
It=σ(XtWxi+Ht−1Whi+bi)
Ft=σ(XtWxf+Ht−1Whf+bf)
Ft=σ(XtWxf+Ht−1Whf+bf)
Ot=σ(XtWxo+Ht−1Who+bo)
Ot=σ(XtWxo+Ht−1Who+bo)
C~t=tanh(XtWxc+Ht−1Whc+bc)
C~t=tanh(XtWxc+Ht−1Whc+bc)
(思考侯选细胞激活函数的不同)
记忆细胞
Ct=Ft⊙Ct−1+It⊙C~t
Ct=Ft⊙Ct−1+It⊙C~t

想象,如果遗忘门一直近似1且输入门一直近似0,过去的细胞将一直通过时间保存并传递至当前时刻
隐含状态
Ht=Ot⊙tanh(Ct)
Ht=Ot⊙tanh(Ct)

输出同RNN
Y^=softmax(HWhy+by)
Y^=softmax(HWhy+by)
GRU

由Cho、van Merrienboer、 Bahdanau和Bengio在2014年提出,比LSTM少一个门控,实验结果却相当

GRU结构

 

数学描述

设隐含状态长度hh,tt时刻输入Xt∈Rn×xXt∈Rn×x(xx维)及t−1t−1时刻隐含状态Ht−1∈Rn×hHt−1∈Rn×h,
重置门,更新门如下
Rt=σ(XtWxr+Ht−1Whr+br)
Rt=σ(XtWxr+Ht−1Whr+br)
Zt=σ(XtWxz+Ht−1Whz+bz)
Zt=σ(XtWxz+Ht−1Whz+bz)

候选隐含状态
H~t=tanh(XtWxh+Rt⊙Ht−1Whh+bh)
H~t=tanh(XtWxh+Rt⊙Ht−1Whh+bh)

隐含状态
Ht=Zt⊙Ht−1+(1−Zt)⊙H~t
Ht=Zt⊙Ht−1+(1−Zt)⊙H~t

输出
Y^=softmax(HWhy+by)
Y^=softmax(HWhy+by)
(无力吐槽csdn了,预览和实际用的不一套渲染,公式丑死)
---------------------
作者:lily_knight
来源:CSDN
原文:https://blog.csdn.net/qq_38210185/article/details/79376053
版权声明:本文为博主原创文章,转载请附上博文链接!

转载于:https://www.cnblogs.com/jfdwd/p/11069130.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值