Leetcode: Best Meeting Point

A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

For example, given three people living at (0,0), (0,4), and (2,2):

1 - 0 - 0 - 0 - 1
|   |   |   |   |
0 - 0 - 0 - 0 - 0
|   |   |   |   |
0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

Hint:

Try to solve it in one dimension first. How can this solution apply to the two dimension case?

为了尽量保证右边的点向左走,左边的点向右走,那我们就应该去这些点中间的点作为交点。

由于是曼哈顿距离,我们可以分开计算横坐标和纵坐标,结果是一样的。所以我们算出各个横坐标到中点横坐标的距离,加上各个纵坐标到中点纵坐标的距离,就是结果了。

 1 public class Solution {
 2     public int minTotalDistance(int[][] grid) {
 3         List<Integer> xPos = new ArrayList<Integer>();
 4         List<Integer> yPos = new ArrayList<Integer>();
 5         for (int x=0; x<grid.length; x++) {
 6             for (int y=0; y<grid[0].length; y++) {
 7                 if (grid[x][y] == 1) {
 8                     xPos.add(x);
 9                     yPos.add(y);
10                 }
11             }
12         }
13         int minDis = 0;
14         for (int x : xPos) {
15             minDis += Math.abs(x - xPos.get(xPos.size()/2));
16         }
17         Collections.sort(yPos);
18         for (int y : yPos) {
19             minDis += Math.abs(y - yPos.get(yPos.size()/2));
20         }
21         return minDis;
22     }
23 }

 

转载于:https://www.cnblogs.com/EdwardLiu/p/5082133.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值