Best Meeting Point

Given an m x n binary grid grid where each 1 marks the home of one friend, return the minimal total travel distance.

The total travel distance is the sum of the distances between the houses of the friends and the meeting point.

The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

Example 1:

Input: grid = [[1,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0]]
Output: 6
Explanation: Given three friends living at (0,0), (0,4), and (2,2).
The point (0,2) is an ideal meeting point, as the total travel distance of 2 + 2 + 2 = 6 is minimal.
So return 6.

Example 2:

Input: grid = [[1,1]]
Output: 1
思路:题目意思是为了求所有点到中间点的距离,也就是所有点到横轴中心点和纵轴中心点,距离和。
1,2,3,4,5 计算所有值往中间走的距离之和,也就是 list.get(j) - list.get(i) ,加起来就可以了。
// 别忘记了,sort list,才能双指针加减;
class Solution {
    public int minTotalDistance(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        List<Integer> rowlist = new ArrayList<>();
        List<Integer> collist = new ArrayList<>();
        for(int i = 0; i < m; i++) {
            for(int j = 0; j < n; j++) {
                if(grid[i][j] == 1) {
                    rowlist.add(i);
                    collist.add(j);
                }
            }
        }
        
        return findcost(rowlist) + findcost(collist);
    }
    
    private int findcost(List<Integer> list) {
        // 别忘记了,sort list,才能双指针加减;
        Collections.sort(list);
        int start = 0; int end = list.size() - 1;
        int res = 0;
        while(start < end) {
            res += list.get(end) - list.get(start);
            end--;
            start++;
        }
        return res;
    }
}
import randomimport multiprocessing# 定义目标函数,这里以一个简单的二维函数为例def target_func(x, y): return x ** 2 + y ** 2# 定义爬山算法,这里使用随机爬山算法def hill_climbing(start_point): current_point = start_point current_value = target_func(*current_point) while True: next_points = [(current_point[0] + random.uniform(-1, 1), current_point[1] + random.uniform(-1, 1)) for _ in range(10)] next_values = [target_func(*p) for p in next_points] next_point, next_value = min(zip(next_points, next_values), key=lambda x: x[1]) if next_value < current_value: current_point = next_point current_value = next_value else: break return current_point, current_value# 定义并行爬山函数def parallel_hill_climbing(num_workers, num_iterations, start_points): global_best_point, global_best_value = None, float('inf') pool = multiprocessing.Pool(num_workers) for i in range(num_iterations): results = pool.map(hill_climbing, start_points) best_point, best_value = min(results, key=lambda x: x[1]) if best_value < global_best_value: global_best_point, global_best_value = best_point, best_value start_points = [global_best_point] * len(start_points) return global_best_point, global_best_value# 测试代码if __name__ == '__main__': num_workers = 4 num_iterations = 10 start_points = [(random.uniform(-10, 10), random.uniform(-10, 10)) for _ in range(num_workers)] best_point, best_value = parallel_hill_climbing(num_workers, num_iterations, start_points) print(f'Best point: {best_point}, best value: {best_value}')
最新发布
05-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值