Given an m x n
binary grid grid
where each 1
marks the home of one friend, return the minimal total travel distance.
The total travel distance is the sum of the distances between the houses of the friends and the meeting point.
The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
Example 1:
Input: grid = [[1,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0]] Output: 6 Explanation: Given three friends living at (0,0), (0,4), and (2,2). The point (0,2) is an ideal meeting point, as the total travel distance of 2 + 2 + 2 = 6 is minimal. So return 6.
Example 2:
Input: grid = [[1,1]] Output: 1
思路:题目意思是为了求所有点到中间点的距离,也就是所有点到横轴中心点和纵轴中心点,距离和。
1,2,3,4,5 计算所有值往中间走的距离之和,也就是 list.get(j) - list.get(i) ,加起来就可以了。
// 别忘记了,sort list,才能双指针加减;
class Solution {
public int minTotalDistance(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
List<Integer> rowlist = new ArrayList<>();
List<Integer> collist = new ArrayList<>();
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(grid[i][j] == 1) {
rowlist.add(i);
collist.add(j);
}
}
}
return findcost(rowlist) + findcost(collist);
}
private int findcost(List<Integer> list) {
// 别忘记了,sort list,才能双指针加减;
Collections.sort(list);
int start = 0; int end = list.size() - 1;
int res = 0;
while(start < end) {
res += list.get(end) - list.get(start);
end--;
start++;
}
return res;
}
}