题面
Bzoj2199(权限题)
解析
非常裸的一道2-sat问题, 麻烦在于如何构造可行解,因为要输出'?', 就不能写原来那种很简短的构造方法了,然而我又不会dfs的方法, 于是就写了拓扑序的构造方法
还是先tarjan缩点, 判断是否存在可行解,不存在就直接输出,存在再进行拓扑染色
(注:接下来的点$j$与点$j'$只代表它们是一对, 两者之间不存在大小关系与顺序,是可交换的)
先考虑不存在'?'的情况,即普通的构造解的情况。我们在缩点后的新图上建反向边然后染色, 对于每一个入度为0且没有染色的点,我们任意地对一个新图点$i$进行染色,染上不能选的颜色,再在它的镜像点$i'$上染上可以选的颜色。解释一下,如果原图点$j$在新图点$i$中,根据对称性,点$j'$在它的镜像点$i'$中,$i'$ 也一定是入度为0且没有染色的点,据此,我们可以枚举原图点$j$找到新图的点$i$与$i'$, 又因为我们建了反边,那么不能选的颜色必须传递给它能到的点,而可以选的颜色不能传。进行完这样的染色后,一对点$j$与点$j'$中必有一个染上了不能选的颜色,那么另一个就是选择,输出答案即可
再考虑在本题中什么时候要输出'Y'和'N', 显然当$j$可以到达$j'$时, 必须输出$j'$代表的答案。因此我们在tarjan缩点后反向建边, 那么点$j$及其可以到达的点都必须染上不能选的标记, 而点$j'$的选择标记可打可不打, 因为必须把n对点都进行这样的操作完后才能得到所有信息,这样的信息才是准确的。如果一对点中有一个点$j$染上了不能选的颜色,那么另一个点$j'$就是选择, 输出$j'$代表的答案; 或者两个点都没有被染色,输出'?'; 因为这个时候已经判断过是否有解,所以不存在两个点都被染上了不能选的颜色这样的无解情况
代码:
#include<cstdio> #include<iostream> #include<vector> #include<algorithm> using namespace std; const int maxn = 1005; int n, m, low[maxn<<1], dfn[maxn<<1], stak[maxn<<1], bel[maxn<<1], vis[maxn<<1], cnt, timer, top; bool col[maxn<<1]; vector<int> G[maxn<<1], H[maxn<<1]; //Y:0, N:1 void tarjan(int x) { dfn[x] = low[x] = ++timer; stak[++top] = x; vis[x] = 1; for(unsigned int i = 0; i < G[x].size(); ++i) { int id = G[x][i]; if(!dfn[id]) { tarjan(id); low[x] = min(low[x], low[id]); } else if(vis[id]) low[x] = min(low[x], dfn[id]); } if(dfn[x] == low[x]) { cnt ++; int t; do { t = stak[top--]; vis[t] = 0; bel[t] = cnt; } while(t != x); } } void update(int x) { vis[x] = timer; col[x] = 1; for(unsigned int i = 0; i < H[x].size(); ++i) if(vis[H[x][i]] != timer && col[H[x][i]] != 1) update(H[x][i]); } void dfs(int x, int y) { vis[y] = timer; if(bel[(x+n)%(n<<1)] == y) { update(y); return ; } for(unsigned int i = 0; i < H[y].size(); ++i) { int id = H[y][i]; if(vis[id] != timer && col[id] != 1) dfs(x, id); } } int main() { scanf("%d%d", &n, &m); for(int i = 1; i <= m; ++i) { int x, y; char s[2], c[2]; scanf("%d", &x);scanf("%s", s);scanf("%d", &y);scanf("%s", c); if(s[0] == 'Y') { if(c[0] == 'Y') { G[x+n].push_back(y); G[y+n].push_back(x); } else { G[x+n].push_back(y+n); G[y].push_back(x); } } else { if(c[0] == 'N') { G[x].push_back(y+n); G[y].push_back(x+n); } else { G[x].push_back(y); G[y+n].push_back(x+n); } } } for(int i = 1; i <= (n<<1); ++i) if(!dfn[i]) tarjan(i); for(int i = 1; i <= n; ++i) if(bel[i] == bel[i+n]) { printf("IMPOSSIBLE\n"); return 0; } for(int i = 1; i <= (n<<1); ++i) for(unsigned j = 0; j < G[i].size(); ++j) if(bel[G[i][j]] != bel[i]) H[bel[G[i][j]]].push_back(bel[i]); for(int i = 1; i <= n; ++i) { ++timer;dfs(i, bel[i]); ++timer;dfs(i+n, bel[i+n]); } for(int i = 1; i <= n; ++i) { if(!col[bel[i]] && !col[bel[i+n]]) printf("?"); else if(!col[bel[i]]) printf("Y"); else printf("N"); } return 0; }