python协方差阵转为相关阵_cmaes-python3的轻量级协方差矩阵自适应进化策略(CMA-ES)实现。-Masashi Shibata Installation Usage Benchmar...

本文介绍了Python中轻量级CMA-ES(Covariance Matrix Adaptation Evolution Strategy)的实现,包括基本用法、Optuna集成以及IPOP-CMA-ES和BIPOP-CMA-ES的示例。提供了安装和使用教程,并展示了如何在不同优化问题上应用CMA-ES。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Masashi Shibata

作者邮箱:shibata_masashi@cyberagent.co.jp

首页:https://github.com/CyberAgent/cmaes

文档:None

下载链接

CMA-ES

Lightweight Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [1] implementation.

8369f1e480dc508466f5e43952c08bdb.gif

Rosenbrock function.

15a269c51e77baf022dc723bfe425514.gif

IPOP-CMA-ES [2] on Himmelblau function.

64927b09cfd2e06536bb3fdb006e2532.gif

BIPOP-CMA-ES [3] on Himmelblau function.

96bbc480d0633622682ec04df2995fd7.gif

These GIF animations are generated by visualizer.py.

Installation

Supported Python versions are 3.6 or later.

$ pip install cmaes

Or you can install via conda-forge.

$ conda install -c conda-forge cmaes

Usage

This library provides an "ask-and-tell" style interface.

import numpy as np

from cmaes import CMA

def quadratic(x1, x2):

return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2

if __name__ == "__main__":

optimizer = CMA(mean=np.zeros(2), sigma=1.3)

for generation in range(50):

solutions = []

for _ in range(optimizer.population_size):

x = optimizer.ask()

value = qu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值