动态规划(斜率优化):SPOJ Commando

Commando


You are the commander of a troop of n soldiers, numbered from 1 to n. For the battle ahead, you plan to divide these n soldiers into several com-mando units. To promote unity and boost morale, each unit will consist of a contiguous sequence of soldiers of the form (i, i+1, . . . , i+k).

Each soldier i has a battle effectiveness rating xi . Originally, the battle effectiveness x of a commando unit (i, i+1, . . . , i+k) was computed by adding up the individual battle effectiveness of the soldiers in the unit. In other words, x = xi + xi+1 + · · · + xi+k .


However, years of glorious victories have led you to conclude that the battle effectiveness of a unit should be adjusted as follows: the adjusted effectiveness x is computed by using the equation x = ax2 + bx + c, where a,b, c are known coefficients(a < 0), x is the original effectiveness of the unit.

 

Your task as commander is to divide your soldiers into commando units in order to maximize the sum of the adjusted effectiveness of all the units.

 

For instance, suppose you have 4 soldiers, x1 = 2, x2 = 2, x3 = 3, x4 = 4. Further, let the coefficients for the equation to adjust the battle effectiveness of a unit be a = −1, b = 10, c = −20. In this case, the best solution is to divide the soldiers into three commando units: The first unit contains soldiers 1 and 2, the second unit contains soldier 3, and the third unit contains soldier 4. The battle effectiveness of the three units are 4, 3, 4 respectively, and the
adjusted effectiveness are 4, 1, 4 respectively. The total adjusted effectiveness for this grouping is 9 and it can be checked that no better solution is possible.

Input format:

First Line of input consists number of cases T.

Each case consists of three lines. The first line contains a positive integer n, the total number of soldiers. The second line contains 3 integers a, b, and c, the coefficients for the equation to adjust the battle effectiveness of a commando unit. The last line contains n integers x1 , x2 , . . . , xn , sepa-rated by spaces, representing the battle effectiveness of soldiers 1, 2, . . . , n, respectively.

Constraints:

T<=3

n ≤ 1, 000, 000,

−5 ≤ a ≤ −1

|b| ≤ 10, 000, 000

|c| ≤ 10, 000, 000

1 ≤ xi ≤ 100.

 


Output format:

Output each answer in a single line.

 

Input:

3
4
-1 10 -20
2 2 3 4
5
-1 10 -20
1 2 3 4 5
8
-2 4 3
100 12 3 4 5 2 4 2

Output:

9
13
-19884

 

  这道题又是一如既往的推公式,推出来后又水过了。

  原来APIO的题目也不是那么难嘛!

 1 //rp++
 2 //#include <bits/stdc++.h>
 3 
 4 #include <iostream>
 5 #include <cstring>
 6 #include <cstdio>
 7 using namespace std;
 8 const int maxn=1000010;
 9 long long f[maxn],s[maxn],a,b,c;
10 int q[maxn],st,ed;
11 long long Get_this(int j,int k)
12 {
13     return f[j]-f[k]+(a*(s[j]+s[k])-b)*(s[j]-s[k]);
14 }
15 int main()
16 {
17     //freopen(".in","r",stdin);
18     //freopen(".out","w",stdout);
19     int T;s[0]=0;
20     scanf("%d",&T);
21     while(T--)
22     {
23         int n;
24         scanf("%d",&n);
25         scanf("%lld%lld%lld",&a,&b,&c);
26         for(int i=1;i<=n;i++)
27             scanf("%lld",&s[i]);
28         
29         for(int i=2;i<=n;i++)
30             s[i]+=s[i-1];
31         
32         st=ed=1;
33         q[st]=0;
34         for(int i=1;i<=n;i++){
35             while(st<ed&&Get_this(q[st+1],q[st])>=2*a*s[i]*(s[q[st+1]]-s[q[st]]))
36                 st++;
37             
38             f[i]=f[q[st]]+a*(s[i]-s[q[st]])*(s[i]-s[q[st]])+b*(s[i]-s[q[st]])+c;
39             
40             while(st<ed&&Get_this(i,q[ed])*(s[q[ed]]-s[q[ed-1]])>=Get_this(q[ed],q[ed-1])*(s[i]-s[q[ed]]))
41                 ed--;
42             
43             q[++ed]=i;
44         }
45         printf("%lld\n",f[n]);
46     }
47     return 0;
48 }

 

转载于:https://www.cnblogs.com/TenderRun/p/5266698.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值