LG传送门
考场上写的\(O(nlogn)\)做法,具体思想是把深度从低到高排个序,开一个标记数组,每次加入的时候标记当前位置并判断:如果当前加入的位置两边都被标记过,则下次的贡献-1,若两边都没有被标记过,则贡献+1。预先把数组的0和n+1标记一下。
考场代码:(考场的两格缩进真的谜)
#include<cstdio>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
I int rd(){
R int f=0; R char c=getchar();
while(c<48||c>57) c=getchar();
while(c>47&&c<58) f=f*10+(c^48),c=getchar();
return f;
}
int b[S];
struct node{
int d,s;
int operator <(const node &a)const{return d==a.d?s<a.s:d<a.d;}
}f[S];
I int max(int x,int y){return x>y?x:y;}
int main(){
R int n=rd(),i,j,k=1,p,u,o=0;
for(i=1;i<=n;++i) f[i].d=rd(),p=max(p,f[i].d),f[i].s=i;
sort(f+1,f+1+n),b[0]=1,b[n+1]=1;
for(i=1,j=0;i<=n;j=f[i].d,++i){
o+=(f[i].d-j)*k;
while(f[i].d==f[i+1].d){
u=f[i].s,b[u]=1;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
++i;
}
u=f[i].s,b[u]=i;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
}
printf("%d",o);
return 0;
}
事实上这题可以\(O(n)\)贪心:从左往右扫,如果后一个比前一个大就计算贡献,事实证明这种贪心是正确的。
#include<cctype>
#include<cstring>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
char buf[S],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,S,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=(f<<3)+(f<<1)+(c^48),c=gc();
return f;
}
int main(){
R int n=rd(),o=0,i,a=0,b=rd();
for(i=2;i<=n;++i){
if(b>a) o+=b-a;
a=b,b=rd();
}
if(b>a) o+=b-a;
printf("%d",o);
return 0;
}