1.缺失值处理 - 拉格朗日插值法
input_file数据文件内容(存在部分缺失值):
from scipy.interpolate import lagrange import pandas as pd
import numpy as np input_file = './data/catering_sale.xls' output_file = './data/sales.xls' data = pd.read_excel(input_file) data['销量'][(data['销量'] < 400) | (data['销量'] > 5000)] = None # 销量小于400及大于5000的视为异常值,置为None # 自定义列向量插值函数 # 问题:当n<k时,list(range(n-k, n))会出现负数,导致y的值出现空值,会影响最终的插值结果,这个问题还未解决。。。 def ployinterp_column(s, n, k=5): # s为列向量,n为被插值的位置,k为取前后的数据个数,默认为5 y = s[list(range(n-k, n)) + list(range(n+1, n+k+1))] y = y[y.notnull()] # 剔除空值 if n-k < 0: # 如果NaN值在前5位,则插值结果取k-n位 return lagrange(y.index, list(y))(k-n) else: return lagrange(y.index, list(y))(n) # 插值并返回插值结果 # 逐个元素判断是否需要插值 for j in range(len(data)): if (data['销量'].isnull())[j]: # 如果元素为空,则进行插值 data['销量'][j] = ployinterp_column(data['销量'], j) data.to_excel(output_file)
output_file结果:
# np.where() a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan], index=['f', 'e', 'd', 'c', 'b', 'a']) b = pd.Series(np.arange(len(a), dtype=np.float64), index=['f', 'e', 'd', 'c', 'b', 'a']) # 如果a有缺失值,则用相应位置的b填充,否则使用a的原有元素 print(np.where(pd.isnull(a), b, a)) # result [ 0. 2.5 2. 3.5 4.5 5. ]
# df.combine_first() df1 = pd.DataFrame({'a': [1., np.nan, 5., np.nan], 'b': [np.nan, 2., np.nan, 6.], 'c': range(2, 18, 4)}) df2 = pd.DataFrame({'a': [5., 4., np.nan, 3., 7.], 'b': [np.nan, 3., 4., 6., 8.]}) # 将df1中的缺失值用df2中相同位置的元素填充,如果没有缺失值则保持df1的原有元素 df1.combine_first(df2) # result a b c 0 1.0 NaN 2.0 1 4.0 2.0 6.0 2 5.0 4.0 10.0 3 3.0 6.0 14.0 4 7.0 8.0 NaN
# 异常值处理 data = pd.DataFrame(np.random.randn(1000, 4)) print(data.describe()) # result 0 1 2 3 count 1000.000000 1000.000000 1000.000000 1000.000000 mean -0.012809 0.007609 -0.002442 0.027889 std 1.026971 0.985884 0.999810 1.006344 min -3.174895 -2.970125 -3.011063 -3.440525 25% -0.723649 -0.657574 -0.642299 -0.647432 50% -0.019972 0.021018 -0.015020 0.012603 75% 0.707184 0.678987 0.674781 0.707672 max 3.076159 3.890196 2.869127 3.089114 col = data[3] # 大于3的值为异常值 col[np.abs(col) > 3] data[(np.abs(data) > 3).any(1)] # any(1) # np.sign()函数,大于0为1,小于0为-1 data[np.abs(data) > 3] = np.sign(data) * 3 print(data.describe()) # result 0 1 2 3 count 1000.000000 1000.000000 1000.000000 1000.000000 mean -0.012763 0.006719 -0.002428 0.028545 std 1.026062 0.982772 0.999768 1.003687 min -3.000000 -2.970125 -3.000000 -3.000000 25% -0.723649 -0.657574 -0.642299 -0.647432 50% -0.019972 0.021018 -0.015020 0.012603 75% 0.707184 0.678987 0.674781 0.707672 max 3.000000 3.000000 2.869127 3.000000
2.数据合并:
# pd.merge() # 使用列或者索引,以类似数据库连接的方式合并多个DataFrame对象 df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1': range(7)}) df2 = pd.DataFrame({'key': ['a', 'b', 'd'], 'data2': range(3)}) print(pd.merge(df1, df2)) # 自动匹配合并列, 默认内连接 print(pd.merge(df1, df2, on='key')) # 显式指定
# result
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1': range(7)}) df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'], 'data2': range(3)}) print(pd.merge(df3, df4, left_on='lkey', right_on='rkey')) # 当不存在相同column时,需要分别指定连接列名
# result
data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a
## 指定连接方式 # 外连接 print(pd.merge(df1, df2, how='outer')) # result data1 key data2 0 0.0 b 1.0 1 1.0 b 1.0 2 6.0 b 1.0 3 2.0 a 0.0 4 4.0 a 0.0 5 5.0 a 0.0 6 3.0 c NaN 7 NaN d 2.0
# 左连接 df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'], 'data1': range(6)}) df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'] ,'data2': range(5)}) print(pd.merge(df1, df2, how='left')) # result data1 key data2 0 0 b 1.0 1 0 b 3.0 2 1 b 1.0 3 1 b 3.0 4 2 a 0.0 5 2 a 2.0 6 3 c NaN 7 4 a 0.0 8 4 a 2.0 9 5 b 1.0 10 5 b 3.0
# 多列连接 left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'], 'key2': ['one', 'two', 'one'], 'lval': [1, 2, 3]}) right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'], 'key2': ['one', 'one', 'one', 'two'], 'rval': [4, 5, 6, 7]}) print(pd.merge(left, right, on=['key1', 'key2'])) # 默认内连接 # result key1 key2 lval rval 0 foo one 1 4 1 foo one 1 5 2 bar one 3 6 print(pd.merge(left, right, on=['key1', 'key2'], how='outer')) # 外连接 # result key1 key2 lval rval 0 foo one 1.0 4.0 1 foo one 1.0 5.0 2 foo two 2.0 NaN 3 bar one 3.0 6.0 4 bar two NaN 7.0
# 只以其中一个列连接,会出现冗余列 pd.merge(left, right, on='key1') # result key1 key2_x lval key2_y rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo two 2 one 4 3 foo two 2 one 5 4 bar one 3 one 6 5 bar one 3 two 7 print(pd.merge(left, right, on='key1', suffixes=('_left', '_right'))) # 给冗余列增加后缀 # result key1 key2_left lval key2_right rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo two 2 one 4 3 foo two 2 one 5 4 bar one 3 one 6 5 bar one 3 two 7
# 使用索引与列进行合并 left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],'value': range(6)}) right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b']) print(pd.merge(left1, right1, left_on='key', right_index=True)) # left1使用key列连接,right1使用index列连接 # result key value group_val 0 a 0 3.5 2 a 2 3.5 3 a 3 3.5 1 b 1 7.0 4 b 4 7.0
# 多列索引连接 lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'key2': [2000, 2001, 2002, 2001, 2002], 'data': np.arange(5.)}) righth = pd.DataFrame(np.arange(12).reshape((6, 2)), index=[['Nevada', 'Nevada', 'Ohio', 'Ohio', 'Ohio', 'Ohio'], [2001, 2000, 2000, 2000, 2001, 2002]], columns=['event1', 'event2']) print(pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True)) # result
data key1 key2 event1 event2
0 0.0 Ohio 2000 4 5
0 0.0 Ohio 2000 6 7
1 1.0 Ohio 2001 8 9
2 2.0 Ohio 2002 10 11
3 3.0 Nevada 2001 0 1
# pd.join()
# pd.join()可以使用index或key合并两个及以上的DataFrame(列方向上的合并)
left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]], index=['a', 'c', 'e'], columns=['Ohio', 'Nevada']) right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]], index=['b', 'c', 'd', 'e'], columns=['Missouri', 'Alabama']) print(left2.join(right2, how='outer')) # result Ohio Nevada Missouri Alabama a 1.0 2.0 NaN NaN b NaN NaN 7.0 8.0 c 3.0 4.0 9.0 10.0 d NaN NaN 11.0 12.0 e 5.0 6.0 13.0 14.0
# 合并多个DataFrame another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]], index=['a', 'c', 'e', 'f'], columns=['New York', 'Oregon']) left2.join([right2, another], how='outer') # result Ohio Nevada Missouri Alabama New York Oregon a 1.0 2.0 NaN NaN 7.0 8.0 b NaN NaN 7.0 8.0 NaN NaN c 3.0 4.0 9.0 10.0 9.0 10.0 d NaN NaN 11.0 12.0 NaN NaN e 5.0 6.0 13.0 14.0 11.0 12.0 f NaN NaN NaN NaN 16.0 17.0
# 轴向连接# np.concatenate() arr = np.arange(12).reshape((3,4)) print(np.concatenate([arr, arr], axis=1)) # 在column方向上连接 # result array([[ 0, 1, 2, ..., 1, 2, 3], [ 4, 5, 6, ..., 5, 6, 7], [ 8, 9, 10, ..., 9, 10, 11]])
# pd.concat() s1 = pd.Series([0,1], index=['a', 'b']) s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e']) s3 = pd.Series([5, 6], index=['f', 'g']) print(pd.concat([s1, s2, s3])) # axis参数默认为0,row方向的 # result a 0 b 1 c 2 d 3 e 4 f 5 g 6 dtype: int64 print(pd.concat([s1, s2, s3], axis=1)) # column方向合并,值如果不存在则记为NaN # result 0 1 2 a 0.0 NaN NaN b 1.0 NaN NaN c NaN 2.0 NaN d NaN 3.0 NaN e NaN 4.0 NaN f NaN NaN 5.0 g NaN NaN 6.0 s4 = pd.concat([s1 * 5, s3]) s5 = pd.concat([s1, s4], axis=1) s5.columns = ['s1', 's4'] print(s5) # result s1 s4 a 0.0 0 b 1.0 5 f NaN 5 g NaN 6 print(pd.concat([s1, s4], axis=1, join='inner')) # join参数指定连接方式 # result 0 1 a 0 0 b 1 5 print(pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']])) # 手动指定要连接的index # result 0 1 a 0.0 0.0 c NaN NaN b 1.0 5.0 e NaN NaN
# 使用keys参数对索引进行分级 result = pd.concat([s1, s2, s3], keys=['one', 'two', 'three']) # 在row方向合并时,keys对应每个Series的一级index,每个Series原有的index则作为二级index print(result) # result one a 0 b 1 two c 2 d 3 e 4 three f 5 g 6 dtype: int64
# Series.unstack() 将Seris格式转换为DataFrame格式 print(result.unstack()) # 一级索引将作为index,二级索引作为columns # result a b c d e f g one 0.0 1.0 NaN NaN NaN NaN NaN two NaN NaN 2.0 3.0 4.0 NaN NaN three NaN NaN NaN NaN NaN 5.0 6.0
# 在列合并时使用keys参数指定column名称 print(pd.concat([s1, s2, s3], axis=1, keys=['one', 'two', 'three'])) # 在column方向合并时,keys对应每个合并的Series的column # result one two three a 0.0 NaN NaN b 1.0 NaN NaN c NaN 2.0 NaN d NaN 3.0 NaN e NaN 4.0 NaN f NaN NaN 5.0 g NaN NaN 6.0
# 指定分级column df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'], columns=['one', 'two']) df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'], columns=['three', 'four'])
# 因为DataFrame对象已经有了column,所以keys参数会设置新的一级column, df原有的column则作为二级column df3 = pd.concat([df1, df2], axis=1, keys=['level1', 'level2']) print(df3) print(df3.columns) # result level1 level2 one two three four a 0 1 5.0 6.0 b 2 3 NaN NaN c 4 5 7.0 8.0 MultiIndex(levels=[['level1', 'level2'], ['four', 'one', 'three', 'two']], labels=[[0, 0, 1, 1], [1, 3, 2, 0]]) # 使用字典实现相同的功能 print(pd.concat({'level1': df1, 'level2': df2}, axis=1)) #result level1 level2 one two three four a 0 1 5.0 6.0 b 2 3 NaN NaN c 4 5 7.0 8.0 # 指定分级column名称 df = pd.concat([df1, df2], axis=1, keys=['level1', 'level2'], names=['levels', 'number']) print(df) print(df.columns) # result levels level1 level2 number one two three four a 0 1 5.0 6.0 b 2 3 NaN NaN c 4 5 7.0 8.0 MultiIndex(levels=[['level1', 'level2'], ['four', 'one', 'three', 'two']], labels=[[0, 0, 1, 1], [1, 3, 2, 0]], names=['levels', 'number'])
# ignore_index df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 'd']) df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a']) # row方向忽略索引 print(pd.concat([df1, df2], ignore_index=True)) # result a b c d 0 1.261208 0.022188 -2.489475 -1.098245 1 0.618618 -1.179827 1.475738 0.334444 2 -0.319088 -0.153492 0.029245 0.336055 3 -0.999023 -0.502154 NaN 0.722256 4 1.428007 -0.726810 NaN 0.432440 # column方向忽略列名 print(pd.concat([df1, df2], axis=1, ignore_index=True)) # result 0 1 2 3 4 5 6 0 1.261208 0.022188 -2.489475 -1.098245 -0.502154 0.722256 -0.999023 1 0.618618 -1.179827 1.475738 0.334444 -0.726810 0.432440 1.428007 2 -0.319088 -0.153492 0.029245 0.336055 NaN NaN NaN
3.重塑层次化索引
data = pd.DataFrame(np.arange(6).reshape((2, 3)), index=pd.Index(['Ohio', 'Colorado'], name='state'), columns=pd.Index(['one', 'two', 'three'], name='number')) # 轴向旋转 result = data.stack() print(result) # result state number Ohio one 0 two 1 three 2 Colorado one 3 two 4 three 5 # 还原操作 print(result.unstack()) # result number one two three state Ohio 0 1 2 Colorado 3 4 5 # 行列转置 print(result.unstack(0)) # result state Ohio Colorado number one 0 3 two 1 4 three 2 5 # 指定要转置的索引名 print(result.unstack('number')) # result number one two three state Ohio 0 1 2 Colorado 3 4 5
# 例1:
s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd']) s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e']) data2 = pd.concat([s1, s2], keys=['one', 'two']) print(data2.unstack()) # result a b c d e one 0.0 1.0 2.0 3.0 NaN two NaN NaN 4.0 5.0 6.0 print(data2.unstack().stack()) # result one a 0.0 b 1.0 c 2.0 d 3.0 two c 4.0 d 5.0 e 6.0 dtype: float64 # 不dropnan值 print(data2.unstack().stack(dropna=False)) # result one a 0.0 b 1.0 c 2.0 d 3.0 e NaN two a NaN b NaN c 4.0 d 5.0 e 6.0 dtype: float64
# 例2:
df = pd.DataFrame({'left': result, 'right': result + 5}, columns=pd.Index(['left', 'right'], name='side')) print(df.unstack('state')) # result side left right state Ohio Colorado Ohio Colorado number one 0 3 5 8 two 1 4 6 9 three 2 5 7 10 print(df.unstack('state').stack('side')) # result state Colorado Ohio number side one left 3 0 right 8 5 two left 4 1 right 9 6 three left 5 2 right 10 7
4.长宽格式的转换:
所谓长格式,即相关属性都集中在同一个列中,另有一个VALUE列对应相应的属性值;
而宽格式, 就是各个属性自成一列,不需要单独的VALUE列。
# 导入宽格式数据 data = pd.read_csv('./data/macrodata.csv') # pd.PeriodIndex 用来存放表示周期性日期的数组,数组元素是不可更改的。例如:年、季度、月、天等。 periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date') data = pd.DataFrame(data.to_records(), # to_records() 将DF转换成numpy record数组 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'), index=periods.to_timestamp('D', 'end')) print(data.head()) # result item realgdp infl unemp date 1959-03-31 2710.349 0.00 5.8 1959-06-30 2778.801 2.34 5.1 1959-09-30 2775.488 2.74 5.3 1959-12-31 2785.204 0.27 5.6 1960-03-31 2847.699 2.31 5.2
# 将宽格式转换为长格式 # 轴向旋转 -> 重置索引 -> rename列名 long_data = data.stack().reset_index().rename(columns={0: 'value'}) print(long_data.head()) # result date item value 0 1959-03-31 realgdp 2710.349 1 1959-03-31 infl 0.000 2 1959-03-31 unemp 5.800 3 1959-06-30 realgdp 2778.801 4 1959-06-30 infl 2.340
# 将长格式转换为宽格式 """ pd.pivot() 基于index/column的值重新调整DataFrame的坐标轴。不支持数据聚合,重复值会导致重复记录 语法格式: df.pivot(index(optional), columns, values) """ wide_data = long_data.pivot('date', 'item', 'value') print(wide_data.head()) # result item infl realgdp unemp date 1959-03-31 0.00 2710.349 5.8 1959-06-30 2.34 2778.801 5.1 1959-09-30 2.74 2775.488 5.3 1959-12-31 0.27 2785.204 5.6 1960-03-31 2.31 2847.699 5.2
# 增加一列value2 long_data['value2'] = np.random.rand(len(long_data)) print(long_data.head()) # result date item value value2 0 1959-03-31 realgdp 2710.349 0.155924 1 1959-03-31 infl 0.000 0.340776 2 1959-03-31 unemp 5.800 0.615475 3 1959-06-30 realgdp 2778.801 0.417256 4 1959-06-30 infl 2.340 0.845293 # 转换时如果不指定values,会将剩余的列都作为values列 pivoted = long_data.pivot('date', 'item') # data为index,item为columns print(pivoted.head()) # result value value2 item infl realgdp unemp infl realgdp unemp date 1959-03-31 0.00 2710.349 5.8 0.340776 0.155924 0.615475 1959-06-30 2.34 2778.801 5.1 0.845293 0.417256 0.825615 1959-09-30 2.74 2775.488 5.3 0.413700 0.512401 0.874806 1959-12-31 0.27 2785.204 5.6 0.081047 0.358632 0.790962 1960-03-31 2.31 2847.699 5.2 0.833500 0.395999 0.329820
5. 删除重复数据:
data = pd.DataFrame({'k1': ['one'] * 3 + ['two'] * 4, 'k2': [1, 1, 2, 3, 3, 4, 4]}) print(data) # result k1 k2 0 one 1 1 one 1 2 one 2 3 two 3 4 two 3 5 two 4 6 two 4 # 判断当前行与前一行是否相同 print(data.duplicated()) # result 0 False 1 True 2 False 3 False 4 True 5 False 6 True dtype: bool # drop重复行 print(data.drop_duplicates()) # result k1 k2 0 one 1 2 one 2 3 two 3 5 two 4
# 新增v1列 data['v1'] = range(7) # 只以k1列为标准删除重复行 print(data.drop_duplicates(['k1'])) # result k1 k2 v1 0 one 1 0 3 two 3 3 # 以k1,k2为准,并且取最后一行的值 print(data.drop_duplicates(['k1', 'k2'], keep='last')) # result k1 k2 v1 1 one 1 1 2 one 2 2 4 two 3 4 6 two 4 6
6.利用函数及映射进行转换
# 使用字典映射进行转换 data = pd.DataFrame({'food': ['bacon', 'pulled pork', 'bacon', 'Pastrami', 'corned beef', 'Bacon', 'pastrami', 'honey ham', 'nova lox'], 'ounces': [4, 3, 12, 6, 7.5, 8, 3, 5, 6]}) print(data) # result food ounces 0 bacon 4.0 1 pulled pork 3.0 2 bacon 12.0 3 Pastrami 6.0 4 corned beef 7.5 5 Bacon 8.0 6 pastrami 3.0 7 honey ham 5.0 8 nova lox 6.0 meat_to_animal = { 'bacon': 'pig', 'pulled pork': 'pig', 'pastrami': 'cow', 'corned beef': 'cow', 'honey ham': 'pig', 'nova lox': 'salmon' } data['animal'] = data['food'].map(str.lower).map(meat_to_animal) print(data) # result food ounces animal 0 bacon 4.0 pig 1 pulled pork 3.0 pig 2 bacon 12.0 pig 3 Pastrami 6.0 cow 4 corned beef 7.5 cow 5 Bacon 8.0 pig 6 pastrami 3.0 cow 7 honey ham 5.0 pig 8 nova lox 6.0 salmon
# 使用lambda匿名函数进行转换 data['animal2'] = data.food.map(lambda x:meat_to_animal[x.lower()]) print(data) # result food ounces animal animal2 0 bacon 4.0 pig pig 1 pulled pork 3.0 pig pig 2 bacon 12.0 pig pig 3 Pastrami 6.0 cow cow 4 corned beef 7.5 cow cow 5 Bacon 8.0 pig pig 6 pastrami 3.0 cow cow 7 honey ham 5.0 pig pig 8 nova lox 6.0 salmon salmon
7.数据标准化
有时候由于量纲(数据单位)不一致,导致数据的差异很大,无法进行比较,需要进行数据标准化,将数据进行一定范围的压缩,以便进行数据比对等后续操作。
datafile = './data/normalization_data.xls' data = pd.read_excel(datafile, header=None) print(data) # result 0 1 2 3 0 78 521 602 2863 1 144 -600 -521 2245 2 95 -457 468 -1283 3 69 596 695 1054 4 190 527 691 2051 5 101 403 470 2487 6 146 413 435 2571 # 最小-最大规范化 data1 = (data - data.min()) / (data.max() - data.min()) print(data1) # result 0 1 2 3 0 0.074380 0.937291 0.923520 1.000000 1 0.619835 0.000000 0.000000 0.850941 2 0.214876 0.119565 0.813322 0.000000 3 0.000000 1.000000 1.000000 0.563676 4 1.000000 0.942308 0.996711 0.804149 5 0.264463 0.838629 0.814967 0.909310 6 0.636364 0.846990 0.786184 0.929571 # 零-均值规范化 data2 = (data - data.mean()) / data.std() print(data2) # result 0 1 2 3 0 -0.905383 0.635863 0.464531 0.798149 1 0.604678 -1.587675 -2.193167 0.369390 2 -0.516428 -1.304030 0.147406 -2.078279 3 -1.111301 0.784628 0.684625 -0.456906 4 1.657146 0.647765 0.675159 0.234796 5 -0.379150 0.401807 0.152139 0.537286 6 0.650438 0.421642 0.069308 0.595564 # np.ceil() 正向取整 data3 = data/10**np.ceil(np.log10(data.abs().max())) print(data3) # result 0 1 2 3 0 0.078 0.521 0.602 0.2863 1 0.144 -0.600 -0.521 0.2245 2 0.095 -0.457 0.468 -0.1283 3 0.069 0.596 0.695 0.1054 4 0.190 0.527 0.691 0.2051 5 0.101 0.403 0.470 0.2487 6 0.146 0.413 0.435 0.2571
8.replace替换
data = pd.Series([1., -999., 2., -999., -1000., 3.]) print(data) # result 0 1.0 1 -999.0 2 2.0 3 -999.0 4 -1000.0 5 3.0 dtype: float64 # 基本替换方式 print(data.replace(-999, np.nan)) # result 0 1.0 1 NaN 2 2.0 3 NaN 4 -1000.0 5 3.0 dtype: float64 # 使用列表分别替换对应位置的元素 print(data.replace([-999, -1000], [np.nan, 0])) # result 0 1.0 1 NaN 2 2.0 3 NaN 4 0.0 5 3.0 dtype: float64
# 使用字典进行更明确的替换 print(data.replace({-999: np.nan, -1000: 0})) # result 0 1.0 1 NaN 2 2.0 3 NaN 4 0.0 5 3.0 dtype: float64
9.重命名轴索引:
data = pd.DataFrame(np.arange(12).reshape((3, 4)), index=['Ohio', 'Colorado', 'New York'], columns=['one', 'two', 'three', 'four']) data.index = data.index.map(str.upper) print(data) # result one two three four OHIO 0 1 2 3 COLORADO 4 5 6 7 NEW YORK 8 9 10 11 # 重命名索引及列名 print(data.rename(index=str.title, columns=str.upper)) # result ONE TWO THREE FOUR Ohio 0 1 2 3 Colorado 4 5 6 7 New York 8 9 10 11 # 使用字典映射新索引及新列名 print(data.rename(index={'OHIO': 'INDIANA'}, columns={'three': 'peekaboo'})) # result one two peekaboo four INDIANA 0 1 2 3 COLORADO 4 5 6 7 NEW YORK 8 9 10 11
10.数据离散化与面元划分
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32] bins = [18, 25, 35, 60, 100] # 按照bins中的区间划分ages中的元素 cats = pd.cut(ages, bins) print(cats) # result [(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]] Length: 12 Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]] # 查看元素属于哪个区间 print(cats.labels) # python2用法 print(cats.codes) # python3用法 # result [0 0 0 ..., 2 2 1] # 统计元素分布情况 print(pd.value_counts(cats)) # result (18, 25] 5 (35, 60] 3 (25, 35] 3 (60, 100] 1 dtype: int64
# 默认的区间访问为左开右闭,指定right=False后,变成左闭右开 print(pd.cut(ages, [18, 26, 36, 61, 100], right=False)) # result [[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)] Length: 12 Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)] # 手动设置标签,用来替换默认的区间 group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior'] cat2 = pd.cut(ages, bins, labels=group_names) print(cat2.value_counts()) # result MiddleAged 3 Senior 1 YoungAdult 3 Youth 5 dtype: int64
# 指定区间的划分精度 data = np.random.rand(20) print(pd.cut(data, 4, precision=2)) # result [(0.054, 0.27], (0.71, 0.93], (0.27, 0.49], (0.27, 0.49], (0.054, 0.27], ..., (0.71, 0.93], (0.71, 0.93], (0.71, 0.93], (0.054, 0.27], (0.71, 0.93]] Length: 20 Categories (4, interval[float64]): [(0.054, 0.27] < (0.27, 0.49] < (0.49, 0.71] < (0.71, 0.93]]
# 自定义分位点 print(pd.qcut(data, [0, 0.1, 0.5, 0.9, 1])) # result [(0.0953, 0.431], (0.893, 0.929], (0.431, 0.893], (0.0953, 0.431], (0.0953, 0.431], ..., (0.431, 0.893], (0.431, 0.893], (0.431, 0.893], (0.0536, 0.0953], (0.431, 0.893]] Length: 20 Categories (4, interval[float64]): [(0.0536, 0.0953] < (0.0953, 0.431] < (0.431, 0.893] < (0.893, 0.929]]
11.排列与随机采样
# np.random.permutation() df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4))) print(df) # result 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 18 19 # 随机取5个数组成一个排列 sampler = np.random.permutation(5) print(sampler) # result [0 1 2 4 3] # 按照排列获取df中的数据 print(df.take(sampler)) # result 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 4 16 17 18 19 3 12 13 14 15 # 只取排列中的后三行数据 print(df.take(np.random.permutation(len(df))[:3])) # result 0 1 2 3 1 4 5 6 7 4 16 17 18 19 0 0 1 2 3
# np.random.randint() bag = np.array([5, 7, -1, 6, 4]) # 从0到5中随机取10个数 sampler = np.random.randint(0, len(bag), size=10) print(sampler) # result [4 0 0 3 3 4 3 0 1 1] # 将sampler作为索引值,获取bag的对应元素 draws = bag.take(sampler) print(draws) print(bag[sampler]) # 简化写法,可得同样结果 # result [4 5 5 6 6 4 6 5 7 7]
12.哑向量的使用
哑向量通常用来表示一组彼此间相互独立的属性,也成为因子。将他们的关系用只有0和1的向量表示,就叫做哑向量。
# 对某列取哑向量 df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'], 'data1': range(6), 'data2': [1, 3, 5, 7, 9, 11]}) print(pd.get_dummies(df['key'])) # result a b c 0 0 1 0 1 0 1 0 2 1 0 0 3 0 0 1 4 1 0 0 5 0 1 0 print(pd.get_dummies(df['data2'])) # result 1 3 5 7 9 11 0 1 0 0 0 0 0 1 0 1 0 0 0 0 2 0 0 1 0 0 0 3 0 0 0 1 0 0 4 0 0 0 0 1 0 5 0 0 0 0 0 1
# 对列名加前缀 dummies = pd.get_dummies(df['key'], prefix='key') # 将哑向量与df[data1]连接在一起 df_with_dummy = df[['data1']].join(dummies) print(df_with_dummy) # result data1 key_a key_b key_c 0 0 0 1 0 1 1 0 1 0 2 2 1 0 0 3 3 0 0 1 4 4 1 0 0 5 5 0 1 0
# 哑向量例子 # 读入影评数据 movies = pd.read_table('./data/movies.dat', sep='::', header=None, names=mnames) 数据文件内容:
# 设置列名 mnames = ['movie_id', 'title', 'genres'] # 提取genres列中的数据,将分离的元素组成集合 genre_iter = (set(x.split('|')) for x in movies.genres) # 对genre_iter中的set集合解压后去重,再排序 genres = sorted(set.union(*genre_iter)) # 生成DataFrame哑向量 dummies = pd.DataFrame(np.zeros((len(movies), len(genres))), columns=genres) # 先根据数据文件生成一个元素均为0的DF for i, gen in enumerate(movies.genres): # 对genres进行循环 dummies.loc[i, gen.split('|')] = 1 # 将genres中的项按照行号设置为1,使其成为哑向量 # 将哑向量df与原df合并到一起 movies_windic = movies.join(dummies.add_prefix('Genre_')) # 查看第一行数据(Series格式) print(movies_windic.iloc[0]) # result movie_id 1 title Toy Story (1995) genres Animation|Children's|Comedy Genre_Action 0 Genre_Adventure 0 Genre_Animation 1 Genre_Children's 1 Genre_Comedy 1 Genre_Crime 0 Genre_Documentary 0 Genre_Drama 0 Genre_Fantasy 0 Genre_Film-Noir 0 Genre_Horror 0 Genre_Musical 0 Genre_Mystery 0 Genre_Romance 0 Genre_Sci-Fi 0 Genre_Thriller 0 Genre_War 0 Genre_Western 0 Name: 0, dtype: object
# 使用pd.cut()进行分类,然后转换成哑向量 values = np.random.rand(10) bins = [0, 0.2, 0.4, 0.6, 0.8, 1] pd.get_dummies(pd.cut(values, bins)) # result (0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0] 0 1 0 0 0 0 1 0 0 0 1 0 2 0 0 0 0 1 3 0 0 1 0 0 4 1 0 0 0 0 5 0 0 0 1 0 6 0 0 1 0 0 7 0 0 0 0 1 8 0 1 0 0 0 9 0 1 0 0 0