AC自动机是个很神奇的数据结构。
这是一道模板题。
首先考虑将模式串们构成\(trie\)树。用\(nxt_i^c\)表示从\(i\)走\(c\)这个字母会走到的儿子,\(S_i\)表示从根走到\(i\)中间经过的边上的字母按顺序连接。
然后定义\(fail_i\)指向与\(S_i\)的后缀匹配的最深前缀\(S_j\)。
于是,可以考虑和KMP相似的方式来更新\(fail\)指针。
不同的是,这里是用上一层的\(fail\)指针来更新下一层的\(fail\)。
这样就可以用\(bfs\)更新了。
更新的时候用以下公式:\(fail_{nxt_i^c}\)设为\(nxt_{fail_i}^c\)。
然后还有一个优化:如果当前节点没有走\(c\)的儿子,那么就将\(nxt_i^c\)设为\(nxt_{fail_i}^c\)。
查询的时候现在在\(u\)节点,现在查询串的这一位为\(c\)直接向\(nxt_u^c\)走即可。
这个数据结构可以在题目为以下形式的时候使用:
给定\(n\)个串,要构造一个长度为\(m\)的串,其要满足每一个位都被给定的某个串覆盖/存在一个给定的串作为它的子串/其中出现的所有子串是给定的串的话都有一定的贡献/\(\dots\),求构造串的种数/最大价值
然后使用的时候就当它是个\(trie\)就行了(其实\(fail\)数组在用的时候基本不会出现),只是走一条边后可能会删掉当前匹配到的一个前缀,跳到与其平齐或在其上方的节点。