《DSP using MATLAB》Problem 7.16

        使用一种固定窗函数法设计带通滤波器。

代码:

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
%%            Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf('        <DSP using MATLAB> Problem 7.16 \n\n');

banner();
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% bandpass
ws1 = 0.3*pi; wp1 = 0.4*pi; wp2 = 0.5*pi; ws2 = 0.6*pi; As = 40; Rp = 0.5;
tr_width = min((wp1-ws1), (ws2-wp2));
[delta1_ori, delta2_ori] = db2delta(Rp, As)

%% ---------------------------------------------------
%%         1  Rectangular Window
%% ---------------------------------------------------
M = ceil(1.8*pi/tr_width) + 1;                 % Rectangular Window
fprintf('\n\n#1.Rectangular Window, Filter Length M=%d.\n', M);

n = [0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;

hd = ideal_lp(wc2, M) - ideal_lp(wc1, M); 
w_rect = (boxcar(M))';  h = hd .* w_rect;
[db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
[Hr,ww,P,L] = ampl_res(h);

Rp = -(min(db(wp1/delta_w+1 :1: floor(wp2/delta_w)+1)));     % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);

As = -round(max(db(ws2/delta_w+1 : 1 : 501)));        % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As);

[delta1_rect, delta2_rect] = db2delta(Rp, As)


%%  ----------------------------
%%             Plot
%% -----------------------------

figure('NumberTitle', 'off', 'Name', 'Problem 7.16.1 ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.3 0.3]); grid on;
xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
subplot(2,2,2); stem(n, w_rect); axis([0 M-1 0 1.1]); grid on;
xlabel('n'); ylabel('w(n)'); title('Rectangular Window, M=19');
subplot(2,2,3); stem(n, h); axis([0 M-1 -0.3 0.3]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');

subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-90,-26,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'26';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.1 h(n) ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); plot(w/pi, db); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
set(gca,'YTickMode','manual','YTick',[-90,-26,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'26';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);

subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0.0,0.5,1.0])

subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.1 h(n)')
set(gcf,'Color','white'); 

plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2_rect,0,delta2_rect,1 - delta1_rect,1, 1 + delta1_rect])


%% ---------------------------------------------------
%%             2  Bartlett Window
%% ---------------------------------------------------
M = ceil(6.1*pi/tr_width) + 1;                 % Bartlett Window
fprintf('\n\n#2.Bartlett Window, Filter Length M=%d.\n', M);

n = [0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;

%wc = (ws + wp)/2,                    % ideal LPF cutoff frequency

hd = ideal_lp(wc2, M) - ideal_lp(wc1, M); 
w_bart = (bartlett(M))';  h = hd .* w_bart;
[db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
[Hr,ww,P,L] = ampl_res(h);

Rp = -(min(db(wp1/delta_w+1 :1: floor(wp2/delta_w)+1)));     % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);

As = -round(max(db(ws2/delta_w+1 : 1 : 501)));               % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As);

[delta1_bart, delta2_bart] = db2delta(Rp, As)

%% --------------------------
%%            Plot
%% --------------------------

figure('NumberTitle', 'off', 'Name', 'Problem 7.16.2 ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.2 0.2]); grid on;
xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');

subplot(2,2,2); stem(n, w_bart); axis([0 M-1 0 1.1]); grid on;
xlabel('n'); ylabel('w(n)'); title('Bartlett Window, M=62');

subplot(2,2,3); stem(n, h); axis([0 M-1 -0.2 0.2]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');

subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-90,-27,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'27';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.2 h(n) ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
set(gca,'YTickMode','manual','YTick',[-90,-27,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'27';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);

subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0.0,0.5,1.0])


subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.2 h(n)')
set(gcf,'Color','white'); 

plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2_bart,0,delta2_bart,1-delta1_bart,1, 1+delta1_bart])


%% ---------------------------------------------------
%%              3  Hann Window
%% ---------------------------------------------------
M = ceil(6.2*pi/tr_width) + 1;                 % Hann Window
fprintf('\n\n#3.Hann Window, Filter Length M=%4d.\n', M);

n = [0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;

%wc = (ws + wp)/2,                    % ideal LPF cutoff frequency

hd = ideal_lp(wc2, M) - ideal_lp(wc1, M); 
w_hann = (hann(M))';  h = hd .* w_hann;
[db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
[Hr,ww,P,L] = ampl_res(h);

Rp = -(min(db(wp1/delta_w+1 :1: floor(wp2/delta_w)+1)));     % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);

As = -round(max(db(ws2/delta_w+1 : 1 : 501)));               % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As);

[delta1_hann, delta2_hann] = db2delta(Rp, As)

%% --------------------------
%%            Plot
%% --------------------------

figure('NumberTitle', 'off', 'Name', 'Problem 7.16.3 ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.2 0.3]); grid on;
xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');

subplot(2,2,2); stem(n, w_hann); axis([0 M-1 0 1.1]); grid on;
xlabel('n'); ylabel('w(n)'); title('Hann Window, M=63');

subplot(2,2,3); stem(n, h); axis([0 M-1 -0.2 0.3]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');

subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-90,-43,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'43';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.3 h(n) ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
set(gca,'YTickMode','manual','YTick',[-90,-43,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'43';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);

subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0.0,0.5,1.0])

subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.3 h(n)')
set(gcf,'Color','white'); 

plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2_hann,0,delta2_hann,1 - delta1_hann,1, 1 + delta1_hann])



%% ---------------------------------------------------
%%             4  Hamming Window
%% ---------------------------------------------------
M = ceil(6.6*pi/tr_width) + 1;                 % Hamming Window
fprintf('\n\n#4.Hamming Window, Filter Length M=%4d.\n', M);

n = [0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;

%wc = (ws + wp)/2,                    % ideal LPF cutoff frequency

hd = ideal_lp(wc2, M) - ideal_lp(wc1, M); 
w_hamm = (hamming(M))';  h = hd .* w_hamm;
[db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
[Hr,ww,P,L] = ampl_res(h);

Rp = -(min(db(wp1/delta_w+1 :1: floor(wp2/delta_w)+1)));     % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);

As = -round(max(db(ws2/delta_w+1 : 1 : 501)));               % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As);

[delta1_hamm, delta2_hamm] = db2delta(Rp, As)

%% --------------------------
%%            Plot
%% --------------------------

figure('NumberTitle', 'off', 'Name', 'Problem 7.16.4 ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.2 0.3]); grid on;
xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');

subplot(2,2,2); stem(n, w_hamm); axis([0 M-1 0 1.1]); grid on;
xlabel('n'); ylabel('w(n)'); title('Hamming Window, M=67');

subplot(2,2,3); stem(n, h); axis([0 M-1 -0.2 0.3]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');

subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-90,-51,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'51';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.4 h(n) ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
set(gca,'YTickMode','manual','YTick',[-90,-51,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'51';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);

subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0.0,0.5,1.0])


subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.4 h(n)')
set(gcf,'Color','white'); 

plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2_hamm,0,delta2_hamm,1 - delta1_hamm,1, 1 + delta1_hamm])



%% ---------------------------------------------------
%%             5  Blackman Window
%% ---------------------------------------------------
M = ceil(11*pi/tr_width) + 1;                 % Blackman Window
fprintf('\n\n#5.Blackman Window, Filter Length M=%d.\n', M);

n = [0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;

%wc = (ws + wp)/2,                    % ideal LPF cutoff frequency

hd = ideal_lp(wc2, M) - ideal_lp(wc1, M); 
w_bla = (blackman(M))';  h = hd .* w_bla;
[db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
[Hr,ww,P,L] = ampl_res(h);

Rp = -(min(db(wp1/delta_w+1 :1: floor(wp2/delta_w)+1)));     % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);

As = -round(max(db(ws2/delta_w+1 : 1 : 501)));               % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As);

[delta1_bla, delta2_bla] = db2delta(Rp, As)

%% --------------------------
%%            Plot
%% --------------------------

figure('NumberTitle', 'off', 'Name', 'Problem 7.16.5 ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.2 0.3]); grid on;
xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');

subplot(2,2,2); stem(n, w_bla); axis([0 M-1 0 1.1]); grid on;
xlabel('n'); ylabel('w(n)'); title('Blackman Window, M=111');

subplot(2,2,3); stem(n, h); axis([0 M-1 -0.2 0.3]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');

subplot(2,2,4); plot(w/pi, db); axis([0 1 -120 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-90,-73,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'73';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.5 h(n) ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -120 10]); 
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
set(gca,'YTickMode','manual','YTick',[-90,-73,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'73';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);

subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -120 10]); 
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0.0,0.5,1.0])


subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.5 h(n)')
set(gcf,'Color','white'); 

plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2_bla,0,delta2_bla,1-delta1_bla,1, 1+delta1_bla])


%% ---------------------------------------------------
%%             6  Kaiser Window
%% ---------------------------------------------------
M = ceil((As-7.95)/(2.285*tr_width)) + 1;                 % Kaiser Window
if As > 21 || As < 50 
	beta = 0.5842*(As-21)^0.4 + 0.07886*(As-21);
else
	beta = 0.1102*(As-8.7);
end
fprintf('\n\n#6.Kaiser Window, Filter Length M=%d, beta=%.4f\n', M,beta);

n = [0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2;

%wc = (ws + wp)/2,                    % ideal LPF cutoff frequency

hd = ideal_lp(wc2, M) - ideal_lp(wc1, M); 
w_kai = (kaiser(M,beta))';  h = hd .* w_kai;
[db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
[Hr,ww,P,L] = ampl_res(h);

Rp = -(min(db(wp1/delta_w+1 :1: floor(wp2/delta_w)+1)));     % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);

As = -round(max(db(ws2/delta_w+1 : 1 : 501)));               % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As);

[delta1_kai, delta2_kai] = db2delta(Rp, As)

%% --------------------------
%%            Plot
%% --------------------------

figure('NumberTitle', 'off', 'Name', 'Problem 7.16.6 ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.2 0.2]); grid on;
xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');

subplot(2,2,2); stem(n, w_kai); axis([0 M-1 0 1.1]); grid on;
xlabel('n'); ylabel('w(n)'); title('Kaiser Window, M=92');

subplot(2,2,3); stem(n, h); axis([0 M-1 -0.2 0.2]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');

subplot(2,2,4); plot(w/pi, db); axis([0 1 -120 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-90,-72,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'72';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.6 h(n) ideal_lp Method')
set(gcf,'Color','white'); 

subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -120 10]); 
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
set(gca,'YTickMode','manual','YTick',[-90,-72,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'72';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);

subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.5,0.6,1,1.4,1.5,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0.0,0.5,1.0])


subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');


figure('NumberTitle', 'off', 'Name', 'Problem 7.16.6 h(n)')
set(gcf,'Color','white'); 

plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2_kai,0,delta2_kai,1-delta1_kai,1, 1+delta1_kai])

  运行结果:

        设计指标,As=40dB,Rp=0.5dB;换算成绝对指标,为δ1=0.0288,δ2=0.0103。

        由书中表7.1可知,矩形窗(Rectangular)和三角窗(Bartlett)不满足设计要求,这里我们也进行贴图验证。

        上图可知,rectangualr窗和bartlett窗不符合设计要求。

        下面将以上几种窗函数设计结果,总结如下

序号名  称长度MAsRp
1Rectangular19261.918
2Bartlett  62270.1059
3Hann  63430.1242
4Hamming67510.0488
5Blackman  111730.0027
6Kaiser92720.0049

 

 

 

 

 

        由上表得知,满足设计要求的是用长M=63的Hann窗截断得到的滤波器。

 

转载于:https://www.cnblogs.com/ky027wh-sx/p/10555840.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值