程序设计思路:先计算N!,其中用递归计算。在分别计算N!,K!,(N-K)!.其中计算N!时直到N=1或0时结束,输出N。
流程图:
源代码:
import java.util.Scanner;
public class Zuoye1_1 {
public static void main(String[] args) {
// TODO 自动生成的方法存根
int n,k,ans;
Scanner input=new Scanner(System.in);
System.out.print("输入n,k:");
n=input.nextInt();
k=input.nextInt();
ans=jiecheng(n)/(jiecheng(k)*jiecheng(n-k));
System.out.print("答案:"+ans);
}
public static int jiecheng(int n) {
if(n==1||n==0)
return 1;
else
return n=jiecheng(n-1)*n;
}
}
结果;
程序设计思:出杨辉三角的第n行的第m个的值等于该位置的元素的上一行的左右两个输的和,然后根据杨辉三角与组合数的关系即c(n,m)等于杨辉三角的第n-1的第m-1和第M个元素的值的和,根据这个来写出组合数的值。
流程图:
源代码:
import java.util.Scanner;
public class Zuoye1_2 {
public static void main(String[] args) {
// TODO 自动生成的方法存根
Scanner input=new Scanner(System.in);
System.out.print("输入n,k:");
int n=input.nextInt();
int k=input.nextInt();
int[][] a=new int[n+1][n+1];
for(int i=0;i<n+1;i++)
{
for(int j=0;j<=i;j++) {
if(j==0||j==i)
{
a[i][j]=1;
System.out.print(a[i][j]+" ");
}
else
{
a[i][j]=a[i-1][j-1]+a[i-1][j];
System.out.print(a[i][j]);
System.out.print(" ");
}
}
System.out.println();
}
if(n<2||k==1)
System.out.println("num=1");
else System.out.println("组合数="+a[n][k-1]+"="+a[n-1][k-2]+"+"+a[n-1][k-1]);
}
}
结果:
程序设计思路:输入n,m,两个数(来组成要求出的组合数)(n>m),如果m=1,则输出结果n,如果m!=1,则进入递归,运用公式,直到进行到n-m=1的时候,结束递归,输出结果。
流程图:类似上一题
源代码;
import java.util.Scanner;
public static void main(String args[]) { Scanner sc=new Scanner(System.in); System.out.print("输入N值:"); int n=sc.nextInt(); System.out.print("输入K值:"); int k=sc.nextInt(); System.out.println("结果为:"+C(n,k)); } public static int C(int n,int k) { if(n<0||k<0||n<k) return 0; if(n==k) return 1; if(k==1) return n; return C(n-1,k)+C(n-1,k-1); }
结果:
程序设计思路:
首先输入盘子的数量n,如果盘子的数量是1,则直接将编号为1的圆盘从A移到C,递归结束。
否则:
递归,将A上编号为1至n-1的圆盘移到B,C做辅助塔;
直接将编号为n的圆盘从A到C;
递归,将B上的编号为1至n-1的圆盘移到C,A做辅助塔。
流程图:
源代码:
import java.util.Scanner;
public class HanNuoTa {
public static void main(String[] args) {
// TODO 自动生成的方法存根
Scanner sc=new Scanner(System.in);
int n;
System.out.println("盘子数:");
n=sc.nextInt();
System.out.println("步骤数:"+new HanNuoTa().hanoiTower(n));
HanNuoTa HanoiTower = new HanNuoTa();
HanoiTower.move(n, 'A', 'B', 'C');
}
public int hanoiTower(int n) {
if(n==1) return 1;
else return hanoiTower(n-1)*2+1;
}
public void move(int n, char a, char b, char c) {
if (n == 1)
System.out.println("盘 " + n + " 由 " + a + " 移至 " + c);
else {
move(n - 1, a, c, b);
System.out.println("盘 " + n + " 由 " + a + " 移至 " + c);
move(n - 1, b, a, c);
}
}
}
结果:
程序思路:从键盘随意输入一个字符串,并将其赋值给一个数组,然后用递归进行,若i=j,泽肯定是递归,否则从数组的首元素与尾元素进行比较,若相等,则进行i++与j--,不断向中间靠拢,直到达到判断条件i>=j(i=j是输入的字符串的长度为偶数个,i>j是输入的字符串有奇数个),中间若有一次不符合判断,直接跳出递归,结束进程,输出不是回文字符串。(i是指的字符串的第一个元素的下标,j是指的字符串的最后一个元素的下标)
流程图:
源代码:
import java.util.Scanner;
public class huiwen { private static int n; private static char a[]; public static void main(String args[]){ Scanner sc=new Scanner(System.in); String str; str=sc.nextLine(); n=str.length(); a=str.toCharArray(); if(huiwen(0)) System.out.println(str+" 是回文数"); else System.out.println(str+" 不是回文数"); } public static boolean huiwen(int m){ if(m>=n/2) return true; if(p[m]==a[n-1-m]) return huiwen(m+1); else return false; } }
结果: