用数据找机会—《决战大数据》精粹

未来是大数据的时代,未来的竞争就是数据的竞争。以前,我们都是有问题找数据,而大数据时代,其最核心的特质则是“用数据找机会”。——车品觉

《决战大数据:驾驭未来商业的利器》是我在两年前接触到的第一本关于大数据的书籍,由阿里巴巴集团副总裁车品觉所著。此书不是讲具体的大数据处理技术,而是从一个大数据运营践行者的角度来讲大数据的本质、数据处理的核心思想以及阿里巴巴数据运营的“内外三板斧”。文章并非枯燥的学术性论文,作者在文中加入很多工作小案例对观点进行引出、阐述或佐证,过渡自然,即使读者毫无大数据运营经验,亦能轻松把握关键思想。本文将对书中的关键思想进行提取,删繁就简,以便读者以最快最方便的途径获取书中的精华。

第一部分 从数据化运营到运营数据

大数据,为什么很多人只会谈,不会做

现在网络上很多人都在谈大数据,但是那些所谓的“大数据专家”只会谈,不会做,因为他们根本就没有做过。目前,在大数据方面,无法深入应用的原因在于,从收集到使用的大数据价值链出现了问题。只有先数据化运营,然后才能运营数据。而现在的情况是,用数据的人不知道大数据从哪里来,做数据的人不知道大数据如何使用。

收集数据的人并不知道未来使用数据的人要做什么,这是目前大数据的一大关键命门。此外,使用数据建模的人也有可能不清楚数据是如何获取的。举个例子,比如我在搜索引擎里发现某个地方搜索“感冒药”的频率非常高,于是我就断定这个地方可能出现了流行性感冒。然而这个数据是从何而来的呢?我完全不知道搜索这个词的人是谁,提供数据的人也没有必要告诉我数据的来源和质量。当创建模型的人可能不知道模型的效果如何,导致使用模型的人也不知道该怎么去反馈使用的结果。这样一来,信息的不对称会原来越严重。这正是体现了大数据实践过程中非常严重的断层问题。

数据化运营就是用数据去解决问题,但是如果我们用数据去解决更多的问题或者提前发现问题,就要运营数据。要使大数据产生真正的商业价值,我们关注的内容并非仅仅4个V,而应该将焦点放在如何真正让数据落地之上.

 

大数据的本质就是还原用户的真实需求

在思考数据的价值时,可以从三个维度来考虑:

  • 你是否可以清楚地识别(Identity)用户的身份?
  • 你能否搞清楚收集的数据对你的价值(Value)是什么?
  • 收集数据时的场景(Situation)是什么?

首先来说识别。现在很多人同时拥有手机、PC和平板等多个设备,这个人每天都登录你的网站。这种情况下你能否知道是同一个用户?现在分辨用户并非难事,但是还有一些情况需要考虑,比如你会将手机借给别人用吗?是否知道用户是谁,决定了企业数据收集行为的意义大小。

数据收集的价值包含两个维度:

  • 企业价值:你不会将用户的所有行为都记录下来,而是记录对企业自身有帮助的数据。数据收集可以实现企业对资源的合理分配。
  • 客户价值:数据如何帮助企业为客户提供更好的服务。数据收集可以实现顾客体验的提升

当我们谈大数据价值的时候,第一点要注意的就是角色不一样,对于数据价值的看法也不同,所以在衡量价值的时候要考虑到受众和给予者这两个对立面的不同看法。以电子商务推荐系统为例,从企业考核的角度来说,他们想要的是如何让用户跟多地点击自己的产品,而对于消费者来说,他们想的却是有一个很想买的东西能不能快速买得到。

在准确识别和衡量了数据价值之后,我们再看一下数据收集的场景。大量的碎片化数据是噪音,让事实串联起来的行为变得非常困难,并且当我们把这些枯燥的数据串联起来的时候,就一定能代表事实吗?

早上你在路上看到一个人穿了件很好看的T恤,你心动了,到公司后马上搜索T恤,然后电商网站给你推荐了10W个相关商品。当你犹豫怎么挑选的时候突然要开会。会议中无聊你打开手机应用,继续搜索T恤,但是依然没有找到那件T恤。最后,手机弹出一个手机促销广告,你发现了一款价格便宜的品牌手机,你毫不犹豫买下了。

一家公司到底有多大的能力,才能还原用户所处的场景呢?

当你搜索T恤时,跟电商的第一个接触点出现,电商还原的场景是“你搜索了T恤,搜出10W个结果,但是你一个都没点击进入”。电商完全不知道你不点击的原因是你要开会。会议中你打开手机应用再次搜索T恤,有了第二次接触,但是你为什么最后却买了一部手机?有谁知道你为什么这么选择?最后你买手机选择了上海卖家,事实上你只是去过上海出差几个月,现在却在杭州。

如你看到的,在本应有那么多连接的数据里面,在购买T恤的案例中却没有了任何连接,那么企业该如何实现还原呢?每天都有大量的碎片化数据产生,那么这种状态下分析数据能有多可靠?所以说,企业在手机数据的时候,一定要明确自己是否有能力去收集用户在你的网站中发生的所有行为。

正如前面分析的,数据的价值必须来自于场景。

 

“活”的数据才是大数据

“死”数据就是单纯存在数据库中,无法进行分析和使用,并不能产生价值的数据。大数据的真正价值就是将数据用于形成主动收集数据的良性循环中,以带动更多的数据进入这个自循环中,并应用于各个行业。比如很多网站的推荐系统,不管是音乐、视频还是商品,都可以让用户来选择“喜欢”或“不喜欢”,这样一来企业就可以通过用户的选择基于后台算法为用户重新推荐。多样的自循环方式打开了大数据之门,而关键就是从解决问题出发。在数据的        自循环中,有两个核心关键点:

  • “活”做数据:就是要跳出既定思维的框架,从相关联的行业和业务中去收集能够为现在所用的数据。
  • “活”看数据指标,动态使用数据:收集到的数据,必须要用场景去验证,灵活使用数据。

“活”用数据,就是看你能否看出这个数据本身的局限是什么。一方面,是我们的数据为用户体验改善了什么;另一方面,企业是使用数据时,对活数据的运用解决了什么问题或者开创了什么机会。要牢记,活用数据很重要。

 

无线数据,大数据的巅峰者

现在移动互联网的主流是APP,APP数据收集的方式包括两种:

  • 手机用户联网时请求服务器的记录
  • 将用户的行为数据记录下来之后,适时地传给网站

但不管是什么样的收集方式,无线数据的最终表现是在没有帐户体系的情况下,和PC的用户行为完全没有办法进行关联,这也以为着用户的数据出现了断层。

为此,我的看法是,保证PC和无线两份数据的完整,通过用户体系将两份数据关联起来,就可以在分析的时候用彼此的融合来还原用户行为。

  • 首先,需要经无线数据单独保存起来,不能将其混入PC数据中。对于不需要还原用户行为的数据,比如页面整体点击率、用户访问时长等基于应用本身的数据就可以用无线数据来分析。
  • 其次,由于PC和无线数据无关系,因此需要一套账号体系来使两者发生关系。

 

数据分类与数据价值,什么才是你的核心数据

在大数据时代,首先要做的是收集大量数据,但更重要的是对数据进行分类、存放和管理。

从数据分类的角度来看,可以分成以下4类:

  • 按照是否可再生的标准来看,可分为不可再生数据和可再生数据。不可再生数据通常就是最原始的数据,比如用户访问网站时如果没有被记录下来,就无法还原了。这类数据必须有完善的保护措施和权限设置。可再生数据就是可通过其他数据生成的数据。
  • 按照数据所处的存储层次来看,可分为基础层、中间层和应用层。基础层与原始数据一致,避免失真;中间层是基于基础层加工的数据,也被认为是数据仓库层,会根据不同的业务需求进行存放;应用层则是针对具体数据问题的应用。
  • 按照数据业务归属来看,可分为各个数据主体,如交易类数据、会员类数据和日志类数据等。
  • 按照是否为隐私来区分,可分为隐私数据和非隐私数据。

数据的5大价值:

  • 识别和串联价值:在大数据时代,越能够还原用户真实身份和真实行为的数据,就越有价值。
  • 描述价值:在负责的数据中抽象出核心点。
  • 时间价值:考虑了时间的维度后,数据会产生更大的价值,对于时间的分析,能够更好的归纳出用户对于某个场景的偏好,对用户的推荐也更加精准。
  • 预测价值
  • 产出数据的价值:对部分数据整合之后产生新价值

 

数据的盲点,负面数据的力量

如果数据存在盲点,核心数据就无法轻易显现出来。盲点可以分为两类:一类是物理盲点,一类是逻辑盲点。

  • 物理盲点:指数据库中不存在这样的数据(未收集)
  • 逻辑盲点:有数据但未很好地发掘出来

对于物理盲点,如果出现在手机客户端问题就非常大,一是无线终端的数据手机技术不是很成熟,二是弥补受限,比如发布新版本流程耗时长、用户安装问题等。在逻辑盲点中,最大的盲点就是将PC数据和无线终端数据混着看。

也许对面对海量数据,我们通常只将焦点放在正面数据上,而忽略掉负面数据。比如公司每个月有10亿的交易量,虽然额度已经很大了,但你是否分析过为什么还有2亿可能的交易量没有做成?因为很多人看了不买,为什么不买?通过这些“负能量”数据,你其实很可能发掘出非常有价值的平台交易增长点。

 

第二部分 阿里巴巴的大数据秘密

混、通、晒,阿里巴巴数据化运营的内三板斧

数据化运营首先要从“人”做起,阿里巴巴数据化运营的内功就是利用好“混、通、晒”三板斧。

现在很多数据分析师缺乏商业意识,往往会导致分析师不知道该用什么样的逻辑去分析数据,公司决策层也得不到任何有价值的参考意见。那么数据分析师要拥有商业敏感的话,就要靠“混”,就是要常跟业务部门混在一起,了解业务部门在做什么,才有可能服务于他们。
当你和业务“混”熟后,看到某些数据你就会明白它和商业决策有无关系及重要性。坚持带着业务问题来观察数据或者带着数据来观察业务,兼备二者的敏感,就是做到了“通”。“通”有两种场景。如现在有一个商业场景和一堆数据,这两者产生关系时,就是商业模式和数据彼此的“通”。因外一种更深入的就是公司组织中各部门的数据交叉,比如统一各部门数据标准和接口等。

“晒是一种在“混”和“通”的基础上产生出来的最终数据表现,通过业务和数据的结合,形成竞争力。

 

存、管、用,阿里巴巴运营数据的外三板斧

2011年开始,阿里巴巴开始从数据化运营想运营数据发展。

“存”就是把数据收集起来。关于数据收集,最重要的不是我们收集了什么数据,而是要思考这些数据如何使用以及到底能起到什么作用。收集数据不是目的,产生价值才是最终目标。

“管”就是对存储的数据进行管理。海量数据存储的代价是巨大的,需要考虑哪些数据可以放冷库,哪些数据需要先备份,是集中管理数据还是分散运作,是封闭保密还是开放等等问题,

“用”就是用数据解决问题。在“用”的问题上,数据分裂和重组,都能做到颠覆性创新。比如用户的生理性别是决策的重要依据,而现在可以从购物属性上变成“早男晚女”,这种改变并不违背运营数据的原则。

 

大数据,未来商业的利器

今天,我们正处于决策成本产生巨变的爆发点,过去无法获取的数据如今唾手可得,而当有些表面上毫不相关的数据关联起来时居然产生了新的商业价值。更重要的是,过去我们更多地是带着问题去寻找能够验证自己观点的数据,如今我们却可以用数据去预测未来可能出现的问题。海量数据使人的智慧得到更大的发挥,并变得更加规模化。

假定数据是脏的。美国一家公司专注于与地理位置相关的数据收集、整理和查询服务,它对于所收集来的数据会提供质量评分以反映数据的可信度,而且会对数据处理的每个阶段所用的算法进行评分以反映质量水平。这是大数据时代非常重要的一个趋势。

学会淡化数据。数据是有优先级的,有些是特别核心,而有些是缺失了也无关紧要的,我们要学会认真盘点那些最有价值的数据。

数据的标签化管理。数据的标签属性是人类经验判断的依据,是数据后的数据。这是个非常重要的趋势,在运营数据时,应该找出一些属性进行归类,然后慢慢考虑如何提炼,这对于未来非常重要。

数据与数据的连接。大数据最重要的是数据与数据之间的关系,而不是数据本身。这就是知识图谱。

 

转载于:https://www.cnblogs.com/cyfonly/p/6229204.html

决战大数据》读后感 《决战大数据》读后感范文 《决战大数据》读后感1 大数据在如今的时代是一个耳熟能详的词,也就在那么很短的一个时期,大数据火爆全网,所有的公司和个人都崇尚大数据,好像谁不知道这个名词就彻底out了。 就拿我这个吃瓜群众来说吧,一直以为大数据离我们很远,对大数据的理解也就是很多很大的数据,虽然每天都能在网上看到各种相关的消息。后来慢慢的就有些理解了,原因并不是我有多好学,而是慢慢的习惯了网上购物。有一天我发现很有趣的现象,平常我经常在网上各种自己需要的资料,而网页上就总会出现广告,这很正常大家也都习惯了。但如果我今天在百度或淘宝上搜索了某件商品,那网页上的广告推荐就会是我搜索相关的这类商品。起初我很惊讶,后来才知道这是大数据的运用。就这样我知道了广告的投放是对大数据的分析而来。 大数据有没有被神化我不知道,但有一种很受大家认可的观点是这样的:谁拥有大数据,就相当了拥有了聚宝盆。印象最深刻要数共享单车,自2016年底开始如同雨后春笋般的爆发开来,一不留神就发现街道边摆满了五彩的自行车,当风口来临时,每个人都想成为在风口飞翔的猪。而就在共享的理念生根发芽时,人们并没有到共享单车的盈利模式在哪,但有一点是所有人都坚信的,在解决最后一公里的同时,能累积大量的数据,而在未来,数据一定可以变现。 这些算是我对大数据最深的理解了吧,直到我看到了《决战大数据》这本书。品觉老师通过这本书带我系统的了解了一遍大数据大数据当然不是简单的一堆超大数据而已,并且数据本身并没有什么商业价值。它的价值在于利用数据数据之间的关系来还原人们的行为和生活场景。 大数据的概念和运用需要一位大师用一本书的篇幅才能展现出来,我的三言两语当然没有这样的能力。但通过对这本书的理解,我有了自己对大数据的理解。现在的人们对于电视电影都不陌生,而且在观看时,我们都是站在上帝视角,我们知晓影视中所有人物的行为甚至心理活动。但我们都明白这在现实中是不可能实现的,现实中每个人都是独立的存在,拥有很多绝密的隐私和自由的大脑,这些都是别人无法窥探的,不管跟你多亲密的人都只能看到你的某一部分。在未来的某一天,你的人生会变成一部电影,大数据就是那个摄像机。 《决战大数据》读后感全文共6页,当前为第1页。不管你的身边有没有人,你的所有行为都会留下痕迹,展现给他人时,或许你会加以掩盖,但在这个世界留下的原始数据无法更改的。如果我们生活的世界是一台电脑,他能收集到你所有的行为痕迹,那它当然可以还原出你的一切,也会比你自己还要了解你自己,拥有这台电脑的人就能像看电影一样看着你。在此之前我们无法去控制这台电脑,也无从知晓你在世间留下的原始痕迹。但当网络、手机、各种穿戴设备的.兴起,这些电子产品就组成了这样一台记录世界的电脑。 《决战大数据》读后感全文共6页,当前为第1页。 回到大数据上吧,现在的大数据还没有到那么庞大的地步,即使未来真的可以收集到如此全面的数据,储存、备份和分析也都是目前无法克服的问题。大数据是通向未来的必经之路,当然不会有那么简单,储存和备份更多的是技术上的问题,分析也是根据各种不同目的来进行调配的,这些要细化来说简直是无穷无尽。就单讲一下现阶段最大的问题――收集数据,本书中反驳了一个观点:先把数据收集着,以后总会有用的。因为无用数据的储存会让你不堪重负。 这个观点在我看来是绝对正确啊,从小就被教育多做点总是好的,不管未来有没有用,先拿过来总是没有错的。至此之后我才明白,我生活中总是有那么多鸡肋的原因了。既然发现了问题就应该办法解决,如果不是所有的数据都有用,那我们应该收集哪些数据呢?这个问题应该回归到现实生活当中,现在运用大数据的一般都是公司,设计运用数据和收集数据的通常不是一批人,运用数据的一般都是公司决策层,而决策层的思维是跳跃的,没有充分的沟通,收集数据的人很难领会到其中的奥秘。因此,在收集数据时面对大量的数据不知所措。解决好这个问题应该会对运营数据起到决定性的作用。 本书大部分篇幅都是在讲解大数据的收集、储存、运用等方面的内容,对企业和用户的影响,还有大数据时代运营模式的改变等等。但这些内容只是让我更加了解了大数据,对生活的直接帮助有限。真正让人豁然开朗的是个人对自己进行大数据管理的理念,原来大数据还可以这么理解,这跟我学生时代认为最佳的系统学习方法不谋而合。 将所有接触的人、物、事当成数据收集起来,归类存储。寻他们之间尽可能多的联系,用关键字进行概括和索引。这将会让你洞察到你身边所有的真相。 《决战大数据》读后感2 《决策大数据》这本书作为2018年的开篇阅读,初略的看下来,基本上好像跟作者没什么关系,作者的叙述在这本书中所占的篇幅比照不是很大,此书最好取名为《众说大数据》比较恰当,将近半本是别人在讨论大数据的问题,只有后面的章节写的是自己
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值