excel查标准正态分布_终于搞清楚正态分布、指数分布到底是个啥了

本文介绍了连续型随机变量的概率分布,重点讲解了正态分布和指数分布。正态分布是连续型随机变量的理想模型,具有钟形曲线特征,常用于描述身高、体重等数据。指数分布则描述了恒定平均速率发生的独立事件,如旅客进站时间间隔。文章还提到了如何利用Excel和Python进行计算和绘图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前一篇文章写的是离散型随机变量的概率分布,今天我们来聊聊连续型随机变量的概率分布。

并非所有的数据都是连续的,根据数据类型的不同,有不同的求概率的方法,对于离散型随机变量的概率分布,我们关心的是取某一个特定数值下的概率,而对于连续型随机变量的概率分布,我们关心的是取某一个特定范围内的概率

首先要提到的一个概念就是:

概率密度函数

概率密度函数用来描述连续型随机变量的概率分布,用函数f(x)表示连续型随机变量,将f(x)就称为概率密度函数,概率密度并非概率,只是一种表示概率的方法,大家不要混淆,其曲线下面的面积表示概率。

概率密度函数下方的总面积为1,因为面积代表概率,而概率是必须为1。

0eea85266c6560ea1006cdb6e54210cf.png

下面是三种典型的连续型随机变量的概率分布

1. 正态分布

随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,就是正态分布,也叫做高斯分布,通常记做:

b453de9c1e52c3975afac84bce92b2b2.png

标准正态分布

正态分布是一个钟形曲线,曲线对称,中央部分的概率密度最大,越往两边,概率密度越小。μ决定了曲线的中央位置,σ决定了曲线的分散性,σ越大,曲线越平缓,σ越小,曲线越陡峭。

267e6a5fc39ef90d0c5d2767238ac04d.png

如何求正态分布的概率?

正态分布的概率密度函数满足:

f4facd30a0d5fa1fad8106c4cb05baae.png

连续型随机变量的理想模型就是正态分布,求正态分布的概率同样是求概率密度曲线下的面积,曲线的面积如何求?没关系,已经有前人栽树了,总结好了一整套的概率对应表,我们就直接乘凉就好了,其实求正态分布下的概率,是高中数学的知识点,但是如今我们完全可以借助Excel、Python这些工具也是可以直接计算出来,就没必要学习怎么去手算了。

标准正态分布的意义是,任何一个正态分布都可以通过线性变换转换为标准正态分布。

4be1cd4345a78307e22e3737076d6adf.png

正态分布

很多实际问题都是符合正态分布的,如身高、体重等。正态分布在质量管理中也应用的非常广泛,“3σ原则”就是在正态分布的原理上建立的。
3σ原则是:

  • 数值分布在(μ—σ,μ+σ)中的概率为0.6826
  • 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544
  • 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
    因此可以认为,Y 的取值几乎全部集中在(μ—3σ,μ+3σ)]区间内,超出这个范围的可能性仅占不到0.3%,这是一个小概率事件,通常在一次试验中是不会发生的,一旦发生就可以认为质量出现了异常。
e3f9ebca888e44aff096b279d0c997d7.png

可以用Python里的matplotlib来画一下正态分布

scipy.stats 是 scipy 专门用于统计的函数库,所有的统计函数都位于子包 scipy.stats 中

fig,ax = plt.subplots(1,1)loc = 1scale = 2.0#平均值, 方差, 偏度, 峰度mean,var,skew,kurt = norm.stats(loc,scale,moments='mvsk')#print mean,var,skew,kurt#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X

结果:

4edeaf9f1e17eb857d4f98ca914bac9a.png

2. 均匀分布

均匀分布,也叫矩形分布,是概率密度函数在结果区间内为固定数值的分布

3faa1e1da046e73a3c94259e90a2ec12.png

均匀分布


它的概率密度函数为:

547afc749894afd1ad6c7217183f90ae.png

均匀分布在自然情况下极为罕见,同样来画一下均匀分布

# 均匀分布fig,ax = plt.subplots(1,1)loc = 1scale = 1#平均值, 方差, 偏度, 峰度mean,var,skew,kurt = uniform.stats(loc,scale,moments='mvsk')#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X

结果:

4756753e983f0b976e529d4ab3ebb0e2.png

3. 指数分布

指数分布是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。如旅客进机场的时间间隔,还有许多电子产品的寿命分布一般服从指数分布。

f7f31cec08fed1ec01bedafafc98bd0e.png

指数分布

其概率密度函数为:

3a03d806cdf07d37abbd76cdeeff3d46.png

指数分布具有无记忆的关键性质。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
用Python画指数分布的概率密度函数

fig,ax = plt.subplots(1,1)lambdaUse = 2loc = 0scale = 1.0/lambdaUse#平均值, 方差, 偏度, 峰度mean,var,skew,kurt = expon.stats(loc,scale,moments='mvsk')#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X

结果:

c3a9ace8d5de07bd493e0a6181397a39.png
cdec6295d08d05ee285b21079d4a2e23.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值